Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 173139 by mnjuly1970 last updated on 07/Jul/22

Answered by Mathspace last updated on 07/Jul/22

Υ=∫_0 ^∞   (dx/( (√(1+x))(x^2 +2x+2)))  changement (√(1+x))=t give  x=t^2 −1 ⇒  Υ=∫_1 ^∞ ((2tdt)/(t((t^2 −1)^2 +2(t^2 −1)+2)))  =2∫_1 ^(+∞) (dt/(t^4 −2t^2 +1+2t^2 −2+2))  =2∫_1 ^(+∞) (dt/(t^4 +1))  we have ∫_0 ^∞ (dt/(t^4 +1))  =∫_0 ^1 (dt/(t^4 +1))+∫_1 ^∞ (dt/(t^4 +1)) ⇒  ∫_1 ^∞ (dt/(t^4 +1))=∫_0 ^∞ (dt/(t^4 +1))−∫_0 ^1 (dt/(t^4 +1))  ∫_0 ^∞   (dt/(t^4 +1))=_(t^4 =z)  (1/4) ∫_0 ^∞   (z^((1/4)−1) /(1+z))dz  =(1/4)×(π/(sin((π/4))))=(π/(4.(1/( (√2)))))=((π(√2))/4)  ∫_0 ^1 (dt/(1+t^4 ))=∫_0 ^1 Σ_(n=0) ^∞ (−1)^n t^(4n) dt  =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(4n) dt  =Σ_(n=0) ^∞ (−1)^n (1/(4n+1))  =Σ_(p=0) ^∞ (1/(8p+1))−Σ_(p=0) ^∞ (1/(4(2p+1)+1))  =Σ_(p=0) ^∞ (1/(8p+1))−Σ_(p=0) ^∞ (1/(8p+5))  =(1/8)Σ_(p=0) ^∞ ((1/(p+(1/8)))−(1/(p+(5/8))))  =  (1/(16))Σ_(p=0) ^∞ (1/((p+(1/8))(p+(5/8))))  =(1/(16))×((Ψ((5/8))−Ψ((1/8)))/((5/8)−(1/8)))  =(1/8)(Ψ((5/8))−Ψ((1/8)))...

Υ=0dx1+x(x2+2x+2)changement1+x=tgivex=t21Υ=12tdtt((t21)2+2(t21)+2)=21+dtt42t2+1+2t22+2=21+dtt4+1wehave0dtt4+1=01dtt4+1+1dtt4+11dtt4+1=0dtt4+101dtt4+10dtt4+1=t4=z140z1411+zdz=14×πsin(π4)=π4.12=π2401dt1+t4=01n=0(1)nt4ndt=n=0(1)n01t4ndt=n=0(1)n14n+1=p=018p+1p=014(2p+1)+1=p=018p+1p=018p+5=18p=0(1p+181p+58)=116p=01(p+18)(p+58)=116×Ψ(58)Ψ(18)5818=18(Ψ(58)Ψ(18))...

Commented by mnjuly1970 last updated on 07/Jul/22

bravo sir...

bravosir...

Commented by Tawa11 last updated on 11/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com