All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 174276 by cortano1 last updated on 28/Jul/22
Answered by blackmamba last updated on 28/Jul/22
limx→01−cos(2021x)2022x2=limx→01−1−2sin2(2021x2)2022x2=limx→01−(1−2sin2(2021x2)2022)x2=11011×limx→0[sin(2021x2)x]2=11011×(2021)24=202124044
Answered by Mathspace last updated on 28/Jul/22
f(x)=1−(cos(2021x))12022x2wehavecosx(αx)∼1−α2x22⇒(cos(αx))m∼(1−α2x22)m∼1−mα22⇒f(x)∼1−(1−1+12022(2021)2x22)x2⇒f(x)∼(2021)22×2022(x→0)⇒limx→0f(x)=(2021)24044
Terms of Service
Privacy Policy
Contact: info@tinkutara.com