Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 174276 by cortano1 last updated on 28/Jul/22

Answered by blackmamba last updated on 28/Jul/22

  lim_(x→0)  ((1−((cos (2021x)))^(1/(2022)) )/x^2 ) =    lim_(x→0)  ((1−((1−2sin^2 (((2021x)/2))))^(1/(2022)) )/x^2 )    = lim_(x→0)  ((1−(1−((2sin^2 (((2021x)/2)))/(2022))))/x^2 )    = (1/(1011)) ×lim_(x→0)  [((sin (((2021x)/2)))/x) ]^2     = (1/(1011))×(((2021)^2 )/4) = ((2021^2 )/(4044))

limx01cos(2021x)2022x2=limx0112sin2(2021x2)2022x2=limx01(12sin2(2021x2)2022)x2=11011×limx0[sin(2021x2)x]2=11011×(2021)24=202124044

Answered by Mathspace last updated on 28/Jul/22

f(x)=((1−(cos(2021x))^(1/(2022)) )/x^2 )  we have cosx(αx)∼1−((α^2 x^2 )/2)  ⇒(cos(αx))^m ∼(1−((α^2 x^2 )/2))^m   ∼1−((mα^2 )/2) ⇒f(x)∼((1−(1−1+(1/(2022))(2021)^2 (x^2 /2)))/x^2 )  ⇒f(x)∼(((2021)^2 )/(2×2022))  (x→0) ⇒  lim_(x→0) f(x)=(((2021)^2 )/(4044))

f(x)=1(cos(2021x))12022x2wehavecosx(αx)1α2x22(cos(αx))m(1α2x22)m1mα22f(x)1(11+12022(2021)2x22)x2f(x)(2021)22×2022(x0)limx0f(x)=(2021)24044

Terms of Service

Privacy Policy

Contact: info@tinkutara.com