Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 174288 by Engr_Jidda last updated on 28/Jul/22

Commented by Engr_Jidda last updated on 28/Jul/22

find the value of t

findthevalueoft

Commented by a.lgnaoui last updated on 30/Jul/22

the idea is to transforme  65536t^3 +t^2 −131076   to  the expression like  Z^3 −pZ+q=0  256^2 t^3 +t^2 −2(256^2 +2)=0  a=256^2   t^3 +(t^2 /a^2 )−2(a+2)=0  t^3 +3((1/(3a^2 )))t^2 −2(a+2)=0  (t+(1/(3a^2 )))^3 −3((1/(9a^4 )))t−(1/(27a^6 ))−2(a+2)=0  (t+(1/(3a^2 )))^3 −(1/(3a^4 ))(t+(1/(3a^2 )))+(1/(9a^6 ))−(1/(27a^6 ))−2(a+2)=0  (t+(1/(3a^2 )))^3 −(1/(3a^4 ))(t+(1/(3a^2 )))+(2/(27a^6 ))−2(a+2)=0  Z=(t+(1/(3a^2 )))=t+(1/(196608))   with a=256  Z^3 −(1/(3a^2 ))Z+2((1/(27a^6 ))−a−2)=0  p=(1/(3a^2 ))         q=2((1/(27a^6 ))−a−2)  the  rest to continue.....  the pricessus is long!  excuse me .

theideaistotransforme65536t3+t2131076totheexpressionlikeZ3pZ+q=02562t3+t22(2562+2)=0a=2562t3+t2a22(a+2)=0t3+3(13a2)t22(a+2)=0(t+13a2)33(19a4)t127a62(a+2)=0(t+13a2)313a4(t+13a2)+19a6127a62(a+2)=0(t+13a2)313a4(t+13a2)+227a62(a+2)=0Z=(t+13a2)=t+1196608witha=256Z313a2Z+2(127a6a2)=0p=13a2q=2(127a6a2)theresttocontinue.....thepricessusislong!excuseme.

Answered by mr W last updated on 30/Jul/22

(1/t^3 )−(1/(131076t))−((65536)/(131076))=0  (1/t)=(((√((((32768)/(131076)))^2 −(1/(393228^3 ))))+((32768)/(131076))))^(1/3) −(((√((((32768)/(131076)))^2 −(1/(393228^3 ))))−((32768)/(131076))))^(1/3)        ≈0.793 695 756  ⇒t≈1.259 928 780

1t31131076t65536131076=01t=(32768131076)213932283+327681310763(32768131076)2139322833276813107630.793695756t1.259928780

Commented by Tawa11 last updated on 31/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com