Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 17580 by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17

Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17

triangle ABC,is given with:  AB=c,BC=a,AC=b  red  lines,are perpendicular bisectors  of sides.  1)find radius of a circle that passes  trough midpoints of red  lines.  2)if ′Z′,be the center of this circle,  find:  PZ (in terms of: a,b,c)  trial case:  a=15.93,b=15.76,c=12.51  ⇒r=2.16    ,PZ=0.81 .

triangleABC,isgivenwith:AB=c,BC=a,AC=bredlines,areperpendicularbisectorsofsides.1)findradiusofacirclethatpassestroughmidpointsofredlines.2)ifZ,bethecenterofthiscircle,find:PZ(intermsof:a,b,c)trialcase:a=15.93,b=15.76,c=12.51r=2.16,PZ=0.81.

Commented by mrW1 last updated on 08/Jul/17

(1) r=((abc)/(4(√((a+b+c)(a+b−c)(a−b+c)(−a+b+c)))))    (2) d=((√(a^6 +b^6 +c^6 +3a^2 b^2 c^2 −a^2 (b^4 +c^4 )−b^2 (a^4 +c^4 )−c^2 (a^4 +b^4 )))/(4(√((a+b+c)(a+b−c)(a−b+c)(−a+b+c)))))

(1)r=abc4(a+b+c)(a+bc)(ab+c)(a+b+c)(2)d=a6+b6+c6+3a2b2c2a2(b4+c4)b2(a4+c4)c2(a4+b4)4(a+b+c)(a+bc)(ab+c)(a+b+c)

Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17

very right answers.beautiful relations.  thank you master.  please post the solution,if it possible.

veryrightanswers.beautifulrelations.thankyoumaster.pleasepostthesolution,ifitpossible.

Commented by mrW1 last updated on 09/Jul/17

Part 1:    ΔDGE∼ΔACB with side length ratio 1:2  ΔKIJ∼ΔDGE with side length ratio 1:2  ⇒ΔKIJ∼ΔACB with side length ratio 1:4  let r=radius of circumcircle of ΔKIJ  let R=radius of circumcircle of ΔABC  ⇒r=(1/4)R    R=PA=PB=PC  diameter of circumcircle of ΔABC=((abc)/(2 A_(ΔABC) ))  R=((abc)/(4 A_(ΔABC) ))=((abc)/(4(√(s(s−a)(s−b)(s−c)))))  =((abc)/(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c))))    ⇒r=(1/4)R=((abc)/(4(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))))      Part 2:   let x=distance between orthocenter (H) and circumcenter (P)  x^2 =9R^2 −(a^2 +b^2 +c^2 )  =((9a^2 b^2 c^2 )/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))−(a^2 +b^2 +c^2 )  =((9a^2 b^2 c^2 −[(a+b)+c][(a+b)−c][c+(a−b)][c−(a−b)](a^2 +b^2 +c^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =((9a^2 b^2 c^2 −[(a+b)^2 −c^2 ][c^2 −(a−b)^2 ](a^2 +b^2 +c^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =((9a^2 b^2 c^2 +[a^2 +b^2 −c^2 +2ab][a^2 +b^2 −c^2 −2ab](a^2 +b^2 +c^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =((9a^2 b^2 c^2 +[(a^2 +b^2 −c^2 )^2 −4a^2 b^2 ](a^2 +b^2 +c^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =((a^2 b^2 (−4a^2 −4b^2 +5c^2 )+(a^2 +b^2 −c^2 )^2 (a^2 +b^2 +c^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =((a^2 b^2 (−4a^2 −4b^2 +5c^2 )+(a^2 +b^2 −c^2 )[(a^2 +b^2 )^2 −c^4 ])/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =((a^2 b^2 (−4a^2 −4b^2 +5c^2 )+(a^2 +b^2 −c^2 )[a^4 +b^4 −c^4 +2a^2 b^2 ])/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =(((−4a^4 b^2 −4a^2 b^4 +5a^2 b^2 c^2 )+(a^6 +a^2 b^4 −a^2 c^4 +2a^4 b^2 +b^2 a^4 +b^6 −b^2 c^4 +2a^2 b^4 −c^2 a^4 −c^2 b^4 +c^6 −2a^2 b^2 c^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  =((a^6 +b^6 +c^6 +3a^2 b^2 c^2 −a^4 (b^2 +c^2 )−b^4 (a^2 +c^2 )−c^4 (a^2 +b^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  ⇒x=(√((a^6 +b^6 +c^6 +3a^2 b^2 c^2 −a^4 (b^2 +c^2 )−b^4 (a^2 +c^2 )−c^4 (a^2 +b^2 ))/((a+b+c)(−a+b+c)(a−b+c)(a+b−c))))    distance between nine−point−circle center (N) and circumcenter (P)  =(x/2)    since circle Z is half as large as circle N,  point Z is midpoint between nine−point−circle center  and circumcenter  ⇒d=(x/4)=((√(a^6 +b^6 +c^6 +3a^2 b^2 c^2 −a^4 (b^2 +c^2 )−b^4 (a^2 +c^2 )−c^4 (a^2 +b^2 )))/(4(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))))

Part1:ΔDGEΔACBwithsidelengthratio1:2ΔKIJΔDGEwithsidelengthratio1:2ΔKIJΔACBwithsidelengthratio1:4letr=radiusofcircumcircleofΔKIJletR=radiusofcircumcircleofΔABCr=14RR=PA=PB=PCdiameterofcircumcircleofΔABC=abc2AΔABCR=abc4AΔABC=abc4s(sa)(sb)(sc)=abc(a+b+c)(a+b+c)(ab+c)(a+bc)r=14R=abc4(a+b+c)(a+b+c)(ab+c)(a+bc)Part2:letx=distancebetweenorthocenter(H)andcircumcenter(P)x2=9R2(a2+b2+c2)=9a2b2c2(a+b+c)(a+b+c)(ab+c)(a+bc)(a2+b2+c2)=9a2b2c2[(a+b)+c][(a+b)c][c+(ab)][c(ab)](a2+b2+c2)(a+b+c)(a+b+c)(ab+c)(a+bc)=9a2b2c2[(a+b)2c2][c2(ab)2](a2+b2+c2)(a+b+c)(a+b+c)(ab+c)(a+bc)=9a2b2c2+[a2+b2c2+2ab][a2+b2c22ab](a2+b2+c2)(a+b+c)(a+b+c)(ab+c)(a+bc)=9a2b2c2+[(a2+b2c2)24a2b2](a2+b2+c2)(a+b+c)(a+b+c)(ab+c)(a+bc)=a2b2(4a24b2+5c2)+(a2+b2c2)2(a2+b2+c2)(a+b+c)(a+b+c)(ab+c)(a+bc)=a2b2(4a24b2+5c2)+(a2+b2c2)[(a2+b2)2c4](a+b+c)(a+b+c)(ab+c)(a+bc)=a2b2(4a24b2+5c2)+(a2+b2c2)[a4+b4c4+2a2b2](a+b+c)(a+b+c)(ab+c)(a+bc)=(4a4b24a2b4+5a2b2c2)+(a6+a2b4a2c4+2a4b2+b2a4+b6b2c4+2a2b4c2a4c2b4+c62a2b2c2)(a+b+c)(a+b+c)(ab+c)(a+bc)=a6+b6+c6+3a2b2c2a4(b2+c2)b4(a2+c2)c4(a2+b2)(a+b+c)(a+b+c)(ab+c)(a+bc)x=a6+b6+c6+3a2b2c2a4(b2+c2)b4(a2+c2)c4(a2+b2)(a+b+c)(a+b+c)(ab+c)(a+bc)distancebetweenninepointcirclecenter(N)andcircumcenter(P)=x2sincecircleZishalfaslargeascircleN,pointZismidpointbetweenninepointcirclecenterandcircumcenterd=x4=a6+b6+c6+3a2b2c2a4(b2+c2)b4(a2+c2)c4(a2+b2)4(a+b+c)(a+b+c)(ab+c)(a+bc)

Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17

thanks master.i am waiting for part2....

thanksmaster.iamwaitingforpart2....

Commented by mrW1 last updated on 09/Jul/17

Commented by b.e.h.i.8.3.417@gmail.com last updated on 09/Jul/17

waiting is over.  thank you very much dear master.  so beautiful and smart.  god blees you sir.thanks a lot again.

waitingisover.thankyouverymuchdearmaster.sobeautifulandsmart.godbleesyousir.thanksalotagain.

Commented by mrW1 last updated on 09/Jul/17

you′re welcome sir!

yourewelcomesir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com