Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 17600 by mondodotto@gmail.com last updated on 08/Jul/17

Answered by alex041103 last updated on 08/Jul/17

We use the following trig sub:  x=tan(θ)⇒dx=sec^2 (θ)dθ  We know that 1+tan^2 θ=sec^2 θ  ⇒(dx/((1+x^2 )^n ))=((sec^2 θ dθ)/(sec^(2n) θ))=(dθ/(sec^(2(n−1)) θ))  But (1/(sec x))=cos x  ⇒ (dθ/(sec^(2(n−1)) θ))=cos^(2(n−1)) θ dθ  Now we change the limits of integration:  x=tanθ⇒θ=tan^(−1) x  ⇒I_n =∫_(tan^(−1) (0)) ^(tan^(−1) (1)) cos^(2(n−1)) θ dθ  = ∫_(  0) ^(π/4) cos^(2(n−1)) θ dθ  ⇒I_(n+1) =∫_0 ^(π/4) cos^(2n) θ dθ  Now we use integration by parts:  I_(n+1) =∫_0 ^(π/4) cos^(2n−1) θ cosθ dθ  u=cos^(2n−1) θ⇒du=(2n−1)cos^(2(n−1)) θ(−sinθ)  dv=cosθdθ⇒v=sinθ  ∫_a ^b u dv=(uv)_a ^b  − ∫_a ^b v du  ⇒I_(n+1) =∫_0 ^(π/4) cos^(2n−1) θ cosθ dθ=   =(cos^(2n−1) θsinθ)_0 ^(π/4)  + (2n−1)∫_0 ^(π/4) sin^2 θcos^(2(n−1)) θ dθ  For (cos^(2n−1) θsinθ)_0 ^(π/4)  we have:  (cos^(2n−1) θsinθ)_0 ^(π/4)  = (((√2)/2))^(2n−1) (((√2)/2)) −(1)^(2n−1) (0)  =((1/(√2)))^(2n) =(1/2^n )=2^(−n)   Let substitute sin^2 θ=1−cos^2 θ   I_(n+1) =2^(−n)  + (2n−1)∫_0 ^(π/4) (1−cos^2 θ)cos^(2(n−1)) θ dθ=  =2^(−n) +(2n−1)[∫_0 ^(π/4) cos^(2(n−1)) θ dθ  −  ∫_0 ^(π/4) cos^(2n) θ dθ]  But   ∫_0 ^(π/4) cos^(2(n−1)) θ dθ = I_n  and  ∫_0 ^(π/4) cos^(2n) θ dθ = I_(n+1)   ⇒I_(n+1)  = 2^(−n)  + (2n−1)(I_n  − I_(n+1) )       I_(n+1)  = 2^(−n)  + (2n−1)I_n  − (2n−1)I_(n+1)   ⇒ 2nI_(n+1)  = 2^(−n)  + (2n−1)I_n   Any questions?

Weusethefollowingtrigsub:x=tan(θ)dx=sec2(θ)dθWeknowthat1+tan2θ=sec2θdx(1+x2)n=sec2θdθsec2nθ=dθsec2(n1)θBut1secx=cosxdθsec2(n1)θ=cos2(n1)θdθNowwechangethelimitsofintegration:x=tanθθ=tan1xIn=tan1(1)tan1(0)cos2(n1)θdθ=π/40cos2(n1)θdθIn+1=π/40cos2nθdθNowweuseintegrationbyparts:In+1=π/40cos2n1θcosθdθu=cos2n1θdu=(2n1)cos2(n1)θ(sinθ)dv=cosθdθv=sinθMissing \left or extra \rightIn+1=π/40cos2n1θcosθdθ=Missing \left or extra \rightMissing \left or extra \rightMissing \left or extra \right=(12)2n=12n=2nLetsubstitutesin2θ=1cos2θIn+1=2n+(2n1)π/40(1cos2θ)cos2(n1)θdθ==2n+(2n1)[π/40cos2(n1)θdθπ/40cos2nθdθ]Butπ/40cos2(n1)θdθ=Inandπ/40cos2nθdθ=In+1In+1=2n+(2n1)(InIn+1)In+1=2n+(2n1)In(2n1)In+12nIn+1=2n+(2n1)InAnyquestions?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com