All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 17600 by mondodotto@gmail.com last updated on 08/Jul/17
Answered by alex041103 last updated on 08/Jul/17
Weusethefollowingtrigsub:x=tan(θ)⇒dx=sec2(θ)dθWeknowthat1+tan2θ=sec2θ⇒dx(1+x2)n=sec2θdθsec2nθ=dθsec2(n−1)θBut1secx=cosx⇒dθsec2(n−1)θ=cos2(n−1)θdθNowwechangethelimitsofintegration:x=tanθ⇒θ=tan−1x⇒In=∫tan−1(1)tan−1(0)cos2(n−1)θdθ=∫π/40cos2(n−1)θdθ⇒In+1=∫π/40cos2nθdθNowweuseintegrationbyparts:In+1=∫π/40cos2n−1θcosθdθu=cos2n−1θ⇒du=(2n−1)cos2(n−1)θ(−sinθ)dv=cosθdθ⇒v=sinθMissing \left or extra \rightMissing \left or extra \right⇒In+1=∫π/40cos2n−1θcosθdθ=Missing \left or extra \rightMissing \left or extra \rightMissing \left or extra \rightMissing \left or extra \rightMissing \left or extra \rightMissing \left or extra \right=(12)2n=12n=2−nLetsubstitutesin2θ=1−cos2θIn+1=2−n+(2n−1)∫π/40(1−cos2θ)cos2(n−1)θdθ==2−n+(2n−1)[∫π/40cos2(n−1)θdθ−∫π/40cos2nθdθ]But∫π/40cos2(n−1)θdθ=Inand∫π/40cos2nθdθ=In+1⇒In+1=2−n+(2n−1)(In−In+1)In+1=2−n+(2n−1)In−(2n−1)In+1⇒2nIn+1=2−n+(2n−1)InAnyquestions?
Terms of Service
Privacy Policy
Contact: info@tinkutara.com