Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 177451 by mr W last updated on 05/Oct/22

Commented by mr W last updated on 05/Oct/22

an elipse with a=10cm and b=6cm is  moved by 5cm in x direction and by  3cm in y direction. find the shaded  area.

anelipsewitha=10cmandb=6cmismovedby5cminxdirectionandby3cminydirection.findtheshadedarea.

Answered by mr W last updated on 05/Oct/22

Commented by mr W last updated on 05/Oct/22

red elipse:  (x^2 /(10^2 ))+(y^2 /6^2 )=1 ⇒y=6(√(1−(x^2 /(100))))  blue elipse:  (((x−5)^2 )/(10^2 ))+(((y−3)^2 )/6^2 )=1  line PQ:  ((10x−25)/(10^2 ))+((6y−9)/6^2 )=0  ⇒y=3(1−(x/5))  point P and Q:  (x^2 /(10^2 ))+(3^2 /6^2 )(1−(x/5))^2 =1  2x^2 −10x−75=0  x=((5±5(√7))/2)  ⇒x_Q =((5(1+(√7)))/2), y_Q =((3(1−(√7)))/2)  ⇒x_P =((5(1−(√7)))/2), y_P =((3(1+(√7)))/2)  A_(segment) =∫_x_P  ^x_Q  [6(√(1−(x^2 /(100))))−3+((3x)/5)]dx+2∫_x_Q  ^(10) 6(√(1−(x^2 /(100)))) dx    =3∫_x_P  ^x_Q  [2(√(1−(x^2 /(100))))−1+(x/5)]dx+12∫_x_Q  ^(10) (√(1−(x^2 /(100)))) dx    =3[x(√(1−(x^2 /(100))))+10 sin^(−1) (x/(10))−x+(x^2 /(10))]_x_P  ^x_Q  +6[x(√(1−(x^2 /(100))))+10 sin^(−1) (x/(10))]_x_Q  ^(10)     =3{((5(1+(√7)))/2)(√(1−(((1+(√7))^2 )/(16))))−((5(1−(√7)))/2)(√(1−(((1−(√7))^2 )/(16))))+10( sin^(−1) ((1+(√7))/4)−sin^(−1) ((1−(√7))/4))−((5(1+(√7)−1+(√7)))/2)+((5[(1+(√7))^2 −(1−(√7))^2 ])/8)}+6{10(√(1−((100)/(100))))−((5(1+(√7)))/2)(√(1−(((1+(√7))^2 )/(16))))+10(sin^(−1) ((10)/(10))−sin^(−1) ((1+(√7))/4))}    =((45)/2)+30( sin^(−1) ((1+(√7))/4)−sin^(−1) ((1−(√7))/4))−((15(√7))/2)−((45)/2)+30π−60 sin^(−1) ((1+(√7))/4)    =30π−30( sin^(−1) ((1+(√7))/4)+ sin^(−1) ((1−(√7))/4))−((15(√7))/2)  A_(elipse) =πab=10×6π=60π  A_(shaded) =A_(elipse) −2A_(segment)     =60π−60π+60(sin^(−1) ((1+(√7))/4)+sin^(−1) ((1−(√7))/4))+15(√7)    =60(sin^(−1) ((1+(√7))/4)+ sin^(−1) ((1−(√7))/4))+15(√7)    =60 cos^(−1) (3/4)+15(√7) ✓    ≈83.05

redelipse:x2102+y262=1y=61x2100blueelipse:(x5)2102+(y3)262=1linePQ:10x25102+6y962=0y=3(1x5)pointPandQ:x2102+3262(1x5)2=12x210x75=0x=5±572xQ=5(1+7)2,yQ=3(17)2xP=5(17)2,yP=3(1+7)2Asegment=xPxQ[61x21003+3x5]dx+2xQ1061x2100dx=3xPxQ[21x21001+x5]dx+12xQ101x2100dx=3[x1x2100+10sin1x10x+x210]xPxQ+6[x1x2100+10sin1x10]xQ10=3{5(1+7)21(1+7)2165(17)21(17)216+10(sin11+74sin1174)5(1+71+7)2+5[(1+7)2(17)2]8}+6{1011001005(1+7)21(1+7)216+10(sin11010sin11+74)}=452+30(sin11+74sin1174)1572452+30π60sin11+74=30π30(sin11+74+sin1174)1572Aelipse=πab=10×6π=60πAshaded=Aelipse2Asegment=60π60π+60(sin11+74+sin1174)+157=60(sin11+74+sin1174)+157=60cos134+15783.05

Commented by Ar Brandon last updated on 05/Oct/22

Sir, why ...+2∫_x_Q  ^(10) 6(√(1−(x^2 /(100))))dx atA_(segment) ?  Why not just ...+∫_x_Q  ^(10) 6(√(1−(x^2 /(100))))dx

Sir,why...+2xQ1061x2100dxatAsegment?Whynotjust...+xQ1061x2100dx

Commented by mr W last updated on 05/Oct/22

see diagram:

seediagram:

Commented by mr W last updated on 05/Oct/22

Commented by Ar Brandon last updated on 05/Oct/22

I see, Sir. But I don′t understand why   you multiplied it by 2

Isee,Sir.ButIdontunderstandwhyyoumultiplieditby2

Commented by mr W last updated on 06/Oct/22

this is obviously wrong sir!  you can count the area from following  graph. each small square has an area  of 4.  we count approximately 21 small  squares, so the area should be   approximately ≈21×4=84

thisisobviouslywrongsir!youcancounttheareafromfollowinggraph.eachsmallsquarehasanareaof4.wecountapproximately21smallsquares,sotheareashouldbeapproximately21×4=84

Commented by mr W last updated on 05/Oct/22

Commented by mr W last updated on 05/Oct/22

∫_x_Q  ^(10) ydx is only the area above the   x axis. but we have also the area  under the x axis, therefore 2∫_x_Q  ^(10) ydx.

xQ10ydxisonlytheareaabovethexaxis.butwehavealsotheareaunderthexaxis,therefore2xQ10ydx.

Commented by Ar Brandon last updated on 05/Oct/22

OK got it now. Thanks!

Commented by a.lgnaoui last updated on 05/Oct/22

y_1 ^2 =(6^2 /(10^2 ))(100−x^2 )      (1)  (y_2 +3)^2 =(6^2 /(10^2 ))[(100−(x+5)^2 ]  (2)  y_1 =y_2 (points communs (1)et(2)  (1)   y_1 =(6/(10))(√(100−x^2  ))  (y+3)^2 =[3+(3/(10))(√(100−x^2 )) ]^2 =(9/(25))[(100−(x+5)^2 ]  (9+((9/(25)))(100−x^2 )+((18)/5)(√(100−x^2  )) )=(9/(25))(75−x^2 −10x)  (45−((9x^2 )/(25))+((18)/5)(√(100−x^2  )) )=(27−((9x^2 )/(25))−((18)/5))  1+(1/5)(√(100−x^2 )) +(1/5)=0  x=9,92  ⇒intersection =(4,92 ; 9,92)  y=(3/5)(√(100−24,20)) =5,22  P(4,92 ; 5,22)    Q(9,92;−2,25)  Aure=∫(6/5)+(1/5)(√(100−x^2 )) dx  =(6/5)x+2∫(√(1−((x^2 /(10))))) dx  sin t=(x/(10))    dx =10cos t dt=10(√(1−t^2  )) dt  =10∫(1−t^2 ) dt=10t−10(t^3 /3)  Aire=∫_0 ^5   =[((6x)/5)  ]_0 ^5 +10[sin^(−1) ((x/(10)))]_0 ^5 −((10)/3)[(sin^(−1) ((x/(10))))^3 ]_0 ^5   =6+10sin^(−1) ((1/2))−((10)/3)[sin^(−1) ((1/2))]^3   6+2[10(π/6)−((10)/3)×(π^3 /(216))]=6+21,44−0,86  Aire=26,58  bj

y12=62102(100x2)(1)(y2+3)2=62102[(100(x+5)2](2)y1=y2(pointscommuns(1)et(2)(1)y1=610100x2(y+3)2=[3+310100x2]2=925[(100(x+5)2](9+(925)(100x2)+185100x2)=925(75x210x)(459x225+185100x2)=(279x225185)1+15100x2+15=0x=9,92intersection=(4,92;9,92)y=3510024,20=5,22P(4,92;5,22)Q(9,92;2,25)Aure=65+15100x2dx=65x+21(x210)dxsint=x10dx=10costdt=101t2dt=10(1t2)dt=10t10t33Aire=05=[6x5]05+10[sin1(x10)]05103[(sin1(x10))3]05=6+10sin1(12)103[sin1(12)]36+2[10π6103×π3216]=6+21,440,86Aire=26,58bj

Commented by mr W last updated on 05/Oct/22

Commented by a.lgnaoui last updated on 05/Oct/22

thank you very much

thankyouverymuch

Commented by Tawa11 last updated on 06/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com