Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 177675 by cortano1 last updated on 08/Oct/22

Commented by HeferH last updated on 08/Oct/22

isn′t  10?    4x^2  + x^2 =100   x^2  = 20   A = ((20)/2) = 10 u^2

isnt10?4x2+x2=100x2=20A=202=10u2

Commented by som(math1967) last updated on 08/Oct/22

Is 10 area? or length of side?

Is10area?orlengthofside?

Commented by HeferH last updated on 08/Oct/22

the green triangle has the same height and   base,so we need  (x^2 /2)  (“x” would be the   orange segment)

thegreentrianglehasthesameheightandbase,soweneedx22(xwouldbetheorangesegment)

Commented by cortano1 last updated on 08/Oct/22

the request is green area

therequestisgreenarea

Answered by som(math1967) last updated on 08/Oct/22

let BD=DC=x  BD=DE ∴∠EBD=45⇒∠BAC=45  ∴BC=AC=2x  4x^2 +x^2 =10^2   ⇒x=2(√5)  ar.of△BDE=ar. △AED  [ ∵ D is mid pt ofBC ,DE∥AC  ∴E is midpt ofAB]  ar of △BDE=(1/2)×2(√5)×2(√5)   =10sq unit  A_(green) =10 sq unit  [ If AD=10]

letBD=DC=xBD=DEEBD=45BAC=45BC=AC=2x4x2+x2=102x=25ar.ofBDE=ar.AED[DismidptofBC,DEACEismidptofAB]arofBDE=12×25×25=10squnitAgreen=10squnit[IfAD=10]

Commented by som(math1967) last updated on 08/Oct/22

Commented by HeferH last updated on 08/Oct/22

sorry if I misunderstood your question sir,   they have the same color so it′s probably   that way.

sorryifImisunderstoodyourquestionsir,theyhavethesamecolorsoitsprobablythatway.

Commented by Tawa11 last updated on 08/Oct/22

Great sir

Greatsir

Answered by Ar Brandon last updated on 08/Oct/22

x^2 +4x^2 =10^2  ⇒x=2(√5)  A=((2x×2x)/2)−((x×2x)/2)−((x×x)/2)      =2x^2 −x^2 −(x^2 /2)=(x^2 /2)=(((2(√5))^2 )/2)       =10 sq units

x2+4x2=102x=25A=2x×2x2x×2x2x×x2=2x2x2x22=x22=(25)22=10squnits

Answered by a.lgnaoui last updated on 08/Oct/22

BD=DE ⇒(∡ABC=(π/4)   DEB=((3π)/4) )  Posons BD=x    EC=y   BE=x(√(2 ))  CD^2 =ED^2 +EC^2 −2ED×ECcos3(π/4)   100=x^2 +y^2 +(√2)xy      (1)  ((sin ∡CDE)/y)=((sin 3(π/4))/(10))     (2)  ∡CDE=∡DCA  ⇒sin (CDE)=sin∡ DCA=(x/(10))   (  DE  ∣∣  AB)   (1)    ⇒(x/(10y))=((√2)/(20))    x=((y(√2))/2)  (1)⇔100=(y^2 /2)+y^2 +y^2 =((5y^2 )/2)  y=2(√(10))          x =2(√5)    sin ∡C DE=((√5)/5)     donc    aire de la parrie verte  Aire=10×((EH)/2)=10((xsin ∡EDC)/2)=5×2(√5) ×((√5)/5)    Aire =10

BD=DE(ABC=π4DEB=3π4)PosonsBD=xEC=yBE=x2CD2=ED2+EC22ED×ECcos3π4100=x2+y2+2xy(1)sinCDEy=sin3π410(2)CDE=DCAsin(CDE)=sinDCA=x10(DE∣∣AB)(1)x10y=220x=y22(1)100=y22+y2+y2=5y22y=210x=25sinCDE=55doncairedelaparrieverteAire=10×EH2=10xsinEDC2=5×25×55Aire=10

Commented by a.lgnaoui last updated on 08/Oct/22

Commented by a.lgnaoui last updated on 08/Oct/22

 H∈CD   sin (∡EDH)=sin (∡EDC)=((EH)/(ED))

HCDsin(EDH)=sin(EDC)=EHED

Commented by Tawa11 last updated on 09/Oct/22

Great sirs.

Greatsirs.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com