Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 17771 by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17

Commented by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17

in XY^Δ Z:       1)XY=XZ      2)XS=ST=TZ=ZY    find any possible angles in this   triangle, by using this two conditions.

inXYZΔ:1)XY=XZ2)XS=ST=TZ=ZYfindanypossibleanglesinthistriangle,byusingthistwoconditions.

Answered by mrW1 last updated on 10/Jul/17

let x=∠X  ∠Z=(π−∠X)/2=π/2−x/2    XS=ST=TZ=ZY=1  XT=2 cos x  XZ=1+2 cos x=(1/(2 cos ∠Z))=(1/(2 sin (x/2)))  ⇒2 sin (x/2) (1+2 cos x)=1  2 sin (x/2) (3−4 sin^2  (x/2))=1  8sin^2  (x/2)−6sin (x/2)+1=0  let t=sin (x/2)  t^3 −(3/4)t+(1/8)=0  ⇒t=cos 280°=sin 10°=sin (x/2)  ⇒(x/2)=10°  ⇒x=20°    note: other solutions not suitable:  t=cos 40°=sin 50°  t=cos 160°=sin 290°

letx=XZ=(πX)/2=π/2x/2XS=ST=TZ=ZY=1XT=2cosxXZ=1+2cosx=12cosZ=12sinx22sinx2(1+2cosx)=12sinx2(34sin2x2)=18sin2x26sinx2+1=0lett=sinx2t334t+18=0t=cos280°=sin10°=sinx2x2=10°x=20°note:othersolutionsnotsuitable:t=cos40°=sin50°t=cos160°=sin290°

Commented by ajfour last updated on 11/Jul/17

((sin 2θ)/b)=((sin θ)/a)  ⇒   b=2acos θ  Also   ((sin θ)/a)=((sin ((π/2)−(θ/2)))/(a+b))  ⇒  (a+b)sin θ=acos (θ/2)         (a+2acos θ)sin θ=acos (θ/2)  ⇒   sin θ+2sin θcos θ=cos (θ/2)  if we let sin (θ/2)=t               2t+4t(1−2t^2 )=1         8t^3 −6t+1=0       same equation, i thought i was  getting another cubic..!

sin2θb=sinθab=2acosθAlsosinθa=sin(π2θ2)a+b(a+b)sinθ=acosθ2(a+2acosθ)sinθ=acosθ2sinθ+2sinθcosθ=cosθ2ifweletsinθ2=t2t+4t(12t2)=18t36t+1=0sameequation,ithoughtiwasgettinganothercubic..!

Commented by ajfour last updated on 11/Jul/17

Commented by b.e.h.i.8.3.417@gmail.com last updated on 11/Jul/17

perfect and nice.thanks master!

perfectandnice.thanksmaster!

Commented by mrW1 last updated on 11/Jul/17

thank you for trying from an other  aspect.   the solution of the cubic eqn. is in this  case simple, they are cos 40°, cos 160°  and cos 280°.    but we can use a trick to make it easier.  let α=(θ/2)  we have got   8 sin^3  α −6 sin α +1=0  ⇒1−2(3 sin α−4 sin^3  α)=0    on the other side we know  sin 3α=3 sin α−4 sin^3  α    ⇒1−2 sin 3α=0  ⇒sin 3α=(1/2)  ⇒3α=30°  ⇒α=10°=(θ/2)  ⇒θ=20°

thankyoufortryingfromanotheraspect.thesolutionofthecubiceqn.isinthiscasesimple,theyarecos40°,cos160°andcos280°.butwecanuseatricktomakeiteasier.letα=θ2wehavegot8sin3α6sinα+1=012(3sinα4sin3α)=0ontheothersideweknowsin3α=3sinα4sin3α12sin3α=0sin3α=123α=30°α=10°=θ2θ=20°

Commented by b.e.h.i.8.3.417@gmail.com last updated on 11/Jul/17

thank to all my best friends.god blees  you all.

thanktoallmybestfriends.godbleesyouall.

Commented by ajfour last updated on 11/Jul/17

thanks for enlightening further sir.  i was wondering how the cubic  yielded θ=20°.

thanksforenlighteningfurthersir.iwaswonderinghowthecubicyieldedθ=20°.

Commented by mrW1 last updated on 11/Jul/17

I solved the cubic eqn. directly without  using the trick above.  t^3 −(3/4)t+(1/8)=0  ⇒t^3 +3pt+q=0  ...(i)  with p=−(1/4) and q=(1/8)  the solution of (i) is following:  D=q^2 +4p^3 =(1/8^2 )−(4/4^3 )=−(3/(64))<0  ⇒there are 3 real roots:  t_1 =2 (√(−p)) cos ((ϕ/3))  t_2 =2 (√(−p)) cos ((ϕ/3)+120°)  t_3 =2 (√(−p)) cos ((ϕ/3)+240°)  with cos ϕ=((−q)/(2 (√(−p^3 ))))=((−1/8)/(2×1/8))=−(1/2)  ⇒ϕ=120°  ⇒ϕ/3=40°  ⇒t_1 =2 (√(−p)) cos ((ϕ/3))=2×(1/2)×cos 40°=cos 40°  ⇒t_2 =2 (√(−p)) cos ((ϕ/3)+120°)=cos 160°  ⇒t_3 =2 (√(−p)) cos ((ϕ/3)+240°)=cos 280°    but only t_3 =cos 280° is suitable, since  cos 280°=sin 10°  ⇒t=sin (x/2)=sin 10°  ⇒x=20°

Isolvedthecubiceqn.directlywithoutusingthetrickabove.t334t+18=0t3+3pt+q=0...(i)withp=14andq=18thesolutionof(i)isfollowing:D=q2+4p3=182443=364<0thereare3realroots:t1=2pcos(φ3)t2=2pcos(φ3+120°)t3=2pcos(φ3+240°)withcosφ=q2p3=1/82×1/8=12φ=120°φ/3=40°t1=2pcos(φ3)=2×12×cos40°=cos40°t2=2pcos(φ3+120°)=cos160°t3=2pcos(φ3+240°)=cos280°butonlyt3=cos280°issuitable,sincecos280°=sin10°t=sinx2=sin10°x=20°

Commented by ajfour last updated on 11/Jul/17

thanks Sir, let me consult some  more literature on solution of  cubic equations.

thanksSir,letmeconsultsomemoreliteratureonsolutionofcubicequations.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com