Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 177835 by infinityaction last updated on 09/Oct/22

Answered by mr W last updated on 09/Oct/22

Σ_(n=1) ^∞ x^(n−1) =(1/(1−x))  Σ_(n=1) ^∞ ∫_0 ^x x^(n−1) dx=∫_0 ^x (1/(1−x))dx  Σ_(n=1) ^∞ (x^n /n)=log (1/(1−x))  with x=(1/2)  ⇒Σ_(n=1) ^∞ (1/(2^n n))=log 2    Σ_(n=1) ^∞ (1/(2^n n))=Σ_(n=1) ^(100) (1/(2^n n))+...>Σ_(n=1) ^(100) (1/(2^n n))  log 2−Σ_(n=1) ^(100) (1/(2^n n))>0  Σ_(n=1) ^∞ (1/(2^n n))=Σ_(n=1) ^(100) (1/(2^n n))+(1/2^(100) )((1/(2×101))+(1/(2^2 ×102))+(1/(2^3 ×103))+...)                <Σ_(n=1) ^(100) (1/(2^n n))+(1/2^(100) )((1/(2×101))+(1/(2^2 ×101))+(1/(2^3 ×101))+...)                =Σ_(n=1) ^(100) (1/(2^n n))+(1/(2^(100) ×101))((1/2)+(1/2^2 )+(1/2^3 )+...)                =Σ_(n=1) ^(100) (1/(2^n n))+(1/(2^(100) ×101))×((1/2)/(1−(1/2)))                =Σ_(n=1) ^(100) (1/(2^n n))+(1/(2^(100) ×101))  ⇒ log 2<Σ_(n=1) ^(100) (1/(2^n n))+(1/(2^(100) ×101))  ⇒ 0<log 2−Σ_(n=1) ^(100) (1/(2^n n))<(1/(2^(100) ×101))    ⇒ (c)

n=1xn1=11xn=10xxn1dx=0x11xdxn=1xnn=log11xwithx=12n=112nn=log2n=112nn=100n=112nn+...>100n=112nnlog2100n=112nn>0n=112nn=100n=112nn+12100(12×101+122×102+123×103+...)<100n=112nn+12100(12×101+122×101+123×101+...)=100n=112nn+12100×101(12+122+123+...)=100n=112nn+12100×101×12112=100n=112nn+12100×101log2<100n=112nn+12100×1010<log2100n=112nn<12100×101(c)

Commented by Tawa11 last updated on 10/Oct/22

Great sir

Greatsir

Commented by infinityaction last updated on 10/Oct/22

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com