Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 17884 by b.e.h.i.8.3.417@gmail.com last updated on 11/Jul/17

Commented by b.e.h.i.8.3.417@gmail.com last updated on 11/Jul/17

diagonals of trapezoid: ABCD,create  4 triangles.area of two this triangles  are equail to: a^2  ,and , b^2 .  find area of trapezoid in terms of: a,b.  one of diagonals,cut another with  a  given  ratio.  trial case:         when:   S_(CDE) =a^2 ,   S_(ABE) =b^2                     ⇒S_(ABCD) =(a+b)^2

diagonalsoftrapezoid:ABCD,create4triangles.areaoftwothistrianglesareequailto:a2,and,b2.findareaoftrapezoidintermsof:a,b.oneofdiagonals,cutanotherwithagivenratio.trialcase:when:SCDE=a2,SABE=b2SABCD=(a+b)2

Answered by mrW1 last updated on 12/Jul/17

let ((CE)/(BE))=((DE)/(AE))=(x/1)    case 1:  [ABE]=a^2  and [CDE]=b^2   [ACE]=(x/1) a^2 =(1/x) b^2   ⇒x^2 =(b^2 /a^2 )  ⇒x=(b/a)  [ABCD]=a^2 +b^2 +2[ACE]=a^2 +b^2 +2 (b/a) a^2   ⇒[ABCD]=(a+b)^2     case 2:  [ABE]=a^2  and [ACE]=b^2   (x/1)=(b^2 /a^2 )  [CDE]=(x/1) b^2 =(b^4 /a^2 )  [ABCD]=a^2 +2b^2 +[CDE]=a^2 +2b^2 +(b^4 /a^2 )=((a^4 +2a^2 b^2 +b^4 )/a^2 )  ⇒[ABCD]=(((a^2 +b^2 )^2 )/a^2 )

letCEBE=DEAE=x1case1:[ABE]=a2and[CDE]=b2[ACE]=x1a2=1xb2x2=b2a2x=ba[ABCD]=a2+b2+2[ACE]=a2+b2+2baa2[ABCD]=(a+b)2case2:[ABE]=a2and[ACE]=b2x1=b2a2[CDE]=x1b2=b4a2[ABCD]=a2+2b2+[CDE]=a2+2b2+b4a2=a4+2a2b2+b4a2[ABCD]=(a2+b2)2a2

Commented by b.e.h.i.8.3.417@gmail.com last updated on 12/Jul/17

thanks master.one case is remain:  [CAE]=a^2 ,[BDE]=b^2 .

thanksmaster.onecaseisremain:[CAE]=a2,[BDE]=b2.

Commented by mrW1 last updated on 12/Jul/17

this is not a possible case,  since [CAE]=[BDE] always    but [CAE]=[BDE]=b^2  alone is not enough to  determine [ABCD] as we can see from  case 2.

thisisnotapossiblecase,since[CAE]=[BDE]alwaysbut[CAE]=[BDE]=b2aloneisnotenoughtodetermine[ABCD]aswecanseefromcase2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com