Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178923 by mnjuly1970 last updated on 22/Oct/22

Commented by mr W last updated on 22/Oct/22

(6/( ((108))^(1/6) )) ?

61086?

Commented by Frix last updated on 22/Oct/22

(6/( ((108))^(1/6) ))=3^(1/2) 2^(2/3)

61086=312223

Commented by mr W last updated on 23/Oct/22

thanks for comfirming!

thanksforcomfirming!

Answered by Frix last updated on 22/Oct/22

let b=xa∧c=ya∧x, y >0  f(a, b, c)=(1/x)+((√x)/( (√y)))+(y)^(1/3)   ((d[(1/x)+((√x)/( (√y)))+(y)^(1/3) ])/dx)=0  −(1/x^2 )+(1/(2(√(xy))))=0 ⇒ x=((4y))^(1/3)   f(a, b, c)=(3/( ((4y))^(1/3) ))+(y)^(1/3)   ((d[(3/( ((4y))^(1/3) ))+(y)^(1/3) ])/dy)=0  −(1/( ((4y^4 ))^(1/3) ))+(1/(3(y^2 )^(1/3) ))=0 ⇒ y=((3(√3))/2) ⇒ x=3^(1/2) 2^(1/3)   ⇒ max (f) =3^(1/2) 2^(2/3)

letb=xac=yax,y>0f(a,b,c)=1x+xy+y3d[1x+xy+y3]dx=01x2+12xy=0x=4y3f(a,b,c)=34y3+y3d[34y3+y3]dy=014y43+13y23=0y=332x=312213max(f)=312223

Answered by mr W last updated on 22/Oct/22

let (c/a)=r^3 , (b/c)=q^2 , (a/b)=p  (a/b)×(b/c)×(c/a)=pq^2 r^3 =1  f(p,q,r)=p+q+r  F(p,q,r)=p+q+r+λ(pq^2 r^3 −1)  (∂F/∂p)=1+λq^2 r^3 =0   ⇒p=−λ  (∂F/∂q)=1+2λpqr^3 =0   ⇒q=−2λ  (∂F/∂r)=1+3λpq^2 r^2 =0   ⇒r=−3λ  (−λ)(−2λ)^2 (−3λ)^3 =1  108λ^6 =1  λ^6 =(1/(108)) ⇒λ=−(1/( ((108))^(1/6) ))  f_(min) =−λ−2λ−3λ=−6λ=(6/( ((108))^(1/6) )) ✓

letca=r3,bc=q2,ab=pab×bc×ca=pq2r3=1f(p,q,r)=p+q+rF(p,q,r)=p+q+r+λ(pq2r31)Fp=1+λq2r3=0p=λFq=1+2λpqr3=0q=2λFr=1+3λpq2r2=0r=3λ(λ)(2λ)2(3λ)3=1108λ6=1λ6=1108λ=11086fmin=λ2λ3λ=6λ=61086

Terms of Service

Privacy Policy

Contact: info@tinkutara.com