All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 179955 by Shrinava last updated on 04/Nov/22
Answered by aleks041103 last updated on 04/Nov/22
(K,+)≇(K/{O2},⋅)⇒∄s:K→K/{O2}:s(x+y)=s(x)⋅s(y)∧s−bijectivedenote(ab−ba):=(a,b)then(a,b)+(c,d)=(a+c,b+d)(a,b)⋅(c,d)=(ab−ba)⋅(cd−dc)==(ac−bdad+bc−(ad+bc)ac−bd)=(ac−bd,ad+bc)Butforcomplexnumberswehave(a+bi)+(c+di)=(a+c)+(b+d)iand(a+bi)(c+di)=(ac−bd)+i(ad+bc)⇒obviously(ifthisisnotobvious,I′llclarify−justask)(K,+)≅(C,+)and(K/{O2},⋅)≅(C/{0},⋅)Thereforetoprovethat(K,+)≇(K/{O2},⋅)isequivalenttoprovingthat(C,+)≇(C/{0},⋅).suppose(C,+)≅(C/{0},⋅).then∃s:C→C/{0}:s(z+w)=s(z)s(w)and∃s−1:C/{0}→C:s(s−1(z))=zands−1(s(z))=zbutifs(z+w)=s(z)s(w)⇒s(z)=vz,forsomev∈C/{0}⇒v=re2πif,r∈R+andf∈[0,1)⇒s(a+bi)=rae−2πbf(ribe2πifa)=ealn(r)−2πbfei(2πfa+bln(r))nowweneedtofind(a,b)forgivens(a+bi)=euei(p+2kπ),whereu∈R+andp∈[0,2π).⇒{aln(r)−2πbf=ubln(r)+2πaf=p+2kπi.e.(ln(r)−2πf2πfln(r))(ab)=(up+2kπ)butdet((ln(r)−2πf2πfln(r)))=(ln(r))2+4π2f2>0⇒wecanalwaysinvertthematrixandfind(a,b)for∀k∈Z.⇒ifs:C→C/{0}:s(z+w)=s(z)s(w)thenfor∀w∈C/{0},∃z1≠z2(z1,2∈C):s(z1)=s(z2)⇒sisnotbijective⇒everyhomomorphismfrom(C,+)to(C/{0},⋅)isnotbijective.⇒(K,+)≅(C,+)≇(C/{0},⋅)≅(K/{O2},⋅)⇒(K,+)≇(K/{O2},⋅)Q.E.D
Commented by Shrinava last updated on 05/Nov/22
cooldearprofessorthankyousomuch
Terms of Service
Privacy Policy
Contact: info@tinkutara.com