Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 180667 by cortano1 last updated on 15/Nov/22

Commented by JDamian last updated on 15/Nov/22

I never expected this from you :(

Answered by a.lgnaoui last updated on 15/Nov/22

Commented by a.lgnaoui last updated on 15/Nov/22

with  end terme.. +(2020^2 −2021^2 −2022^2 +2023^2 )  Resultat: 2020+4 =2024

withendterme..+(202022021220222+20232)Resultat:2020+4=2024

Answered by a.lgnaoui last updated on 15/Nov/22

Probleme 5   { ((xy+(x/y)=3p(x^2 +y^2 )    (1))),((xy−(x/y)=p(x^2 +y^2 )      (2))) :}  with   y≠0      (((1))/((2)))⇒((xy+(x/y))/(xy−(x/y)))=3 ⇒(y^2 +1)=3(y^2 −1)       y=±(√2)    1)y=−(√2)        x^2 +2+((√2)/(2p)) x=0  x^2 +((x(√2))/(2p))+2      △=(1/(2p^2 ))−8  x_1 =(((√2) (1±(√(1−16p^2 )) ))/(4p))   2)y=(√2)     x(√2) −((√2)/2)x=p(x^2 +2)    x^2 −((x(√2))/(2p))+2    x_2 =−x_1   ((−1)/4)<p<(1/4)   (2 racines  reels)  p∈]−∞,((−1)/4)]∪[(1/4),+∞[  (2  racines coppmplexes)  Conclusion  S={((((√(2()) 1±(√(1−16p^2 )))/(2p)),−(√2) );(−(((√2) (±1(√(1−16p^2 )))/(4p)),+(√2))}

Probleme5{xy+xy=3p(x2+y2)(1)xyxy=p(x2+y2)(2)withy0(1)(2)xy+xyxyxy=3(y2+1)=3(y21)y=±21)y=2x2+2+22px=0x2+x22p+2=12p28x1=2(1±116p2)4p2)y=2x222x=p(x2+2)x2x22p+2x2=x114<p<14(2racinesreels)p],14][14,+[(2racinescoppmplexes)ConclusionS={(2(1±116p22p,2);(2(±1116p24p,+2)}

Answered by a.lgnaoui last updated on 15/Nov/22

probleme 5(partie 2)  (√(x+(√x) )) (−)(√(x+(√x) )) =(3/2)(√(x/(x+(√x))))  si   signe −alors    0=(3/2)(√(x/(x+(√x)))) ⇒(x/(x+(√x)))=0  x=∅(pas de solutions)  signe(+)  2(√(x+(√x))) =(3/2)×(√(x/(x+(√x))))    4(x+(√x))=(9/4)×(x/(x+(√x)))    16(x+(√x) )^2 −9x=0  16x^2 +32x(√x) +7x=0  x+32(√x) +7=0    (avec x≠0)    (√x) =t     t^2 +32t+7=0    16^2 −7=[15,78]^2         x=−16±(√(249)) =−16±(√(3×83)) ≅−16±9(√3)        x={31,78i  ;  0,22i}

probleme5(partie2)x+x()x+x=32xx+xsisignealors0=32xx+xxx+x=0x=(pasdesolutions)signe(+)2x+x=32×xx+x4(x+x)=94×xx+x16(x+x)29x=016x2+32xx+7x=0x+32x+7=0(avecx0)x=tt2+32t+7=01627=[15,78]2x=16±249=16±3×8316±93x={31,78i;0,22i}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com