Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 18149 by b.e.h.i.8.3.417@gmail.com last updated on 15/Jul/17

Commented by mrW1 last updated on 16/Jul/17

an other try:  let u=xyz  ⇒x^2 +xyz=17x  x^2 −17x+u=0  ⇒x=((17±(√(17^2 −4u)))/2)=((17)/2)±(√((((17)/2))^2 −u ))=a±(√(a^2 −u))  similarly  ⇒y=((11±(√(11^2 −4u)))/2)=((11)/2)±(√((((11)/2))^2 −u)) =b±(√(b^2 −u))  ⇒z=((13±(√(13^2 −4u)))/2)=((13)/2)±(√((((13)/2))^2 −u ))=c±(√(c^2 −u))    u=xyz=(a±(√(a^2 −u)))(b±(√(b^2 −u)))(c±(√(c^2 −u)))  ......

anothertry:letu=xyzx2+xyz=17xx217x+u=0x=17±1724u2=172±(172)2u=a±a2usimilarlyy=11±1124u2=112±(112)2u=b±b2uz=13±1324u2=132±(132)2u=c±c2uu=xyz=(a±a2u)(b±b2u)(c±c2u)......

Commented by ajfour last updated on 16/Jul/17

Nice cycle Sir.

NicecycleSir.

Answered by mrW1 last updated on 16/Jul/17

xy+x^2 z=11x  (x^2 −1)z=11x−13  z=((11x−13)/(x^2 −1))  y=11−(((11x−13)x)/(x^2 −1))=((13x−11)/(x^2 −1))    x+(((11x−13)(13x−11))/((x^2 −1)^2 ))=17  x(x^4 −2x^2 +1)+143x^2 +143−290x=17x^4 −34x^2 +17  x^5 −2x^3 +x+143x^2 +143−290x=17x^4 −34x^2 +17  x^5 −17x^4 −2x^3 +177x^2 −289x+126=0  there are 5 roots:  x=(−3.64848, 0.81019, 1.29243, 2, 16.53586)  e.g. with x=2  ⇒y=5  ⇒z=3

xy+x2z=11x(x21)z=11x13z=11x13x21y=11(11x13)xx21=13x11x21x+(11x13)(13x11)(x21)2=17x(x42x2+1)+143x2+143290x=17x434x2+17x52x3+x+143x2+143290x=17x434x2+17x517x42x3+177x2289x+126=0thereare5roots:x=(3.64848,0.81019,1.29243,2,16.53586)e.g.withx=2y=5z=3

Commented by b.e.h.i.8.3.417@gmail.com last updated on 16/Jul/17

thanks a lot  dear master.it is   beautiful and smart.

thanksalotdearmaster.itisbeautifulandsmart.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com