Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 181812 by HeferH last updated on 01/Dec/22

Answered by mr W last updated on 01/Dec/22

sin 30°=((sin (2α+30°))/(2 cos α))  sin (2α+30°)=cos α=sin (90°−α)  2α+30°=90°−α ⇒α=20°  or  2α+30°=90°+α ⇒α=60°

sin30°=sin(2α+30°)2cosαsin(2α+30°)=cosα=sin(90°α)2α+30°=90°αα=20°or2α+30°=90°+αα=60°

Commented by mr W last updated on 01/Dec/22

Commented by mr W last updated on 01/Dec/22

Answered by som(math1967) last updated on 01/Dec/22

let AD=DC=x,AC=BD=y  from△ADC  (x/(sinα))=(y/(sin(180−2α)))   ⇒x=((ysinα)/(sin2α))=(y/(2cosα))  [sin2α=2sinαcosα]  from△ABD     (x/(sin30))=(y/(sin(180−30−2α)))  ⇒(y/(2sin30cosα))=(y/(sin(150−2α)))  ⇒(1/(cosα))=(1/(sin(150−2α)))  ⇒sin(90−α)=sin(150−2α)  ⇒90−α=150−2α  ⇒2α−α=150−90  ∴ α=60  or  sin(90+α)=sin(150−2α)   90+α=150−2α  ⇒3α=60 ∴α=20

letAD=DC=x,AC=BD=yfromADCxsinα=ysin(1802α)x=ysinαsin2α=y2cosα[sin2α=2sinαcosα]fromABDxsin30=ysin(180302α)y2sin30cosα=ysin(1502α)1cosα=1sin(1502α)sin(90α)=sin(1502α)90α=1502α2αα=15090α=60orsin(90+α)=sin(1502α)90+α=1502α3α=60α=20

Commented by som(math1967) last updated on 01/Dec/22

Answered by Acem last updated on 01/Dec/22

Commented by Acem last updated on 01/Dec/22

5α= 187.5   i need recheck my solution

5α=187.5ineedrecheckmysolution

Answered by HeferH last updated on 01/Dec/22

Commented by HeferH last updated on 01/Dec/22

2α − 60° = α    α = 60°   thank you all for answering, I wanted to see   other methods :)

2α60°=αα=60°thankyouallforanswering,Iwantedtoseeothermethods:)

Answered by a.lgnaoui last updated on 01/Dec/22

((sin 30)/(BC))=((sin λ)/(AC))      BC=((AC×sin 30)/(sin λ))  ((sin α)/(BC))=((sin (π−2α)^ )/(BD)) =  AC=BD⇒   =  ((sin α)/(BC))=((sin 2α)/(AC))⇒((sin α)/((AC×sin 30)/(sin λ)))=((sin 2α)/(AC))  ((sin α×sin λ)/(sin 30))=sin 2α  sin λ=((sin 30×sin 2α)/(sin α))=cos α=  λ=(π/2)−α            (1)  θ=π−2α      △ABD     2α+λ+30=180  λ=150−2α      (2)  (1)  et (2)⇒90−α=150−2α  α=150−90    Angle α=60°

sin30BC=sinλACBC=AC×sin30sinλMissing \left or extra \rightAC=BD=sinαBC=sin2αACsinαAC×sin30sinλ=sin2αACsinα×sinλsin30=sin2αsinλ=sin30×sin2αsinα=cosα=λ=π2α(1)θ=π2αABD2α+λ+30=180λ=1502α(2)(1)et(2)90α=1502αα=15090Angleα=60°

Commented by a.lgnaoui last updated on 01/Dec/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com