Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 181858 by KINMATICS last updated on 01/Dec/22

Answered by hmr last updated on 01/Dec/22

The general solution of  the linear nonhomogeneous  equation is equal to:    (1) general solution of the  corresponding homogeneous equation  +  (2) particular solution of the  nonhomogeneous equation.    (1)  y′′ + 4y = 0  → r^2  + 4 = 0 → r = ± 2i  y_h (x) = c_1 Cos (2x) + c_2  Sin (2x)    (2)  y (x) = (A_1 x+A_0 )Cos(x) + (B_1 x+B_0 )Sin(x)    y′ (x) = (A_1 )Cos(x) − (A_1 x+A_0 )Sin(x)  + (B_1 )Sin(x) + (B_1 x +B_0 )Cos(x)  →   y′ (x) = (A_1 +B_1 x+B_0 )Cos(x) + (−A_1 x−A_0 +B_1 )Sin(x)    y′′ (x) = (B_1 )Cos(x) − (A_1 +B_1 x+B_0 )Sin(x)  + (−A_1 )Sin(x) + (−A_1 x−A_0 +B_1 )Cos(x)  →  y′′ (x) = (−A_1 x−A_0 +2B_1 )Cos(x) − (2A_1 +B_1 x+B_0 )Sin(x)    • y′′ + 4y = xCos(x)  → (−A_1 x−A_0 +2B_1 )Cos(x) − (2A_1 +B_1 x+B_0 )Sin(x)  + 4((A_1 x+A_0 )Cos(x) + (B_1 x+B_0 )Sin(x))  = xCos(x)  →  (3A_1 x+3A_0 +2B_1 )Cos(x) + (−2A_1 +3B_1 x+3B_0 )Sin(x)  = xCos(x)  → A_(0 ) = B_1  = 0       A_1  = (1/3)      B_0 = (2/9)  →  y (x) = (1/3) x Cos (x) + (2/9) Sin (x)    thus the answer is:  ϕ (x) = c_1 Cos(2x) + c_2 Sin(2x) + (1/3) x Cos (x) + (2/9) Sin (x)

Thegeneralsolutionofthelinearnonhomogeneousequationisequalto:(1)generalsolutionofthecorrespondinghomogeneousequation+(2)particularsolutionofthenonhomogeneousequation.(1)y+4y=0r2+4=0r=±2iyh(x)=c1Cos(2x)+c2Sin(2x)(2)y(x)=(A1x+A0)Cos(x)+(B1x+B0)Sin(x)y(x)=(A1)Cos(x)(A1x+A0)Sin(x)+(B1)Sin(x)+(B1x+B0)Cos(x)y(x)=(A1+B1x+B0)Cos(x)+(A1xA0+B1)Sin(x)y(x)=(B1)Cos(x)(A1+B1x+B0)Sin(x)+(A1)Sin(x)+(A1xA0+B1)Cos(x)y(x)=(A1xA0+2B1)Cos(x)(2A1+B1x+B0)Sin(x)y+4y=xCos(x)(A1xA0+2B1)Cos(x)(2A1+B1x+B0)Sin(x)+4((A1x+A0)Cos(x)+(B1x+B0)Sin(x))=xCos(x)(3A1x+3A0+2B1)Cos(x)+(2A1+3B1x+3B0)Sin(x)=xCos(x)A0=B1=0A1=13B0=29y(x)=13xCos(x)+29Sin(x)thustheansweris:φ(x)=c1Cos(2x)+c2Sin(2x)+13xCos(x)+29Sin(x)

Commented by hmr last updated on 01/Dec/22

ϕ (x) = c_1 Cos(2x) + c_2 Sin(2x) + (1/3) x Cos (x) + (2/9) Sin (x)  • ϕ (0) = 1  →  c_1  = 1    •• ϕ (((3π)/4)) = ((−π (√2))/8)  →  −c_2  −((π (√2))/8) + ((√2)/9) = ((−π (√2))/8)  →  c_2  = ((√2)/9)      ϕ(x)= Cos(2x)+((√2)/9)Sin(2x)+ (1/3)xCos(x)+(2/9)Sin(x)  1−(π/3)  ϕ(π)+ϕ(−π)=(1−(π/3))+(1+(π/3))=2

φ(x)=c1Cos(2x)+c2Sin(2x)+13xCos(x)+29Sin(x)φ(0)=1c1=1φ(3π4)=π28c2π28+29=π28c2=29φ(x)=Cos(2x)+29Sin(2x)+13xCos(x)+29Sin(x)1π3φ(π)+φ(π)=(1π3)+(1+π3)=2

Answered by qaz last updated on 01/Dec/22

y_p =(1/(D^2 +4))xcos x=(x−((2D)/(D^2 +4)))(1/(D^2 +4))cos x  =(x−((2D)/(D^2 +4)))(1/3)cos x=(1/3)xcos x+(2/9)sin x  ⇒y=C_1 sin 2x+C_2 cos 2x+(1/3)xcos x+(2/9)sin x  y(0)=C_2 =1  y(((3π)/4))=−C_1 −(π/(4(√2)))+((√2)/9)=−(π/(4(√2)))   ⇒C_1 =((√2)/9)  ⇒y=((√2)/9)sin 2x+cos 2x+(1/3)xcos x+(2/9)sin x  ⇒y(π)+y(−π)=((√2)/9)

yp=1D2+4xcosx=(x2DD2+4)1D2+4cosx=(x2DD2+4)13cosx=13xcosx+29sinxy=C1sin2x+C2cos2x+13xcosx+29sinxy(0)=C2=1y(3π4)=C1π42+29=π42C1=29y=29sin2x+cos2x+13xcosx+29sinxy(π)+y(π)=29

Terms of Service

Privacy Policy

Contact: info@tinkutara.com