Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 181998 by Tolmasbek last updated on 03/Dec/22

Answered by a.lgnaoui last updated on 03/Dec/22

α=3((π/(18))+((πn)/9))  tan α=((tan ((π/(18))+((πn)/9))[3−tan^2 ((π/(18))+((πn)/9))])/(1−3tan^2 ((π/(18))+((πn)/9))))  =((tan ((π/9)((1/2)+n)[3−tan^2 ((π/9)((1/2)+n)])/(1−3tan^2 ((π/9)((1/2)+n)))   { (((π/9)((1/2)+n)≠(π/2)+kπ)),((1−3tan^2 ((π/9)((1/2)+n))≠0)) :}   { (( n ≠4+9k   (k∈Z^+ ))),((n≠1+k  and  n≠9k−2     )) :}  donc    n≠2k   k∈Z  k>1  So,     α   is not also true

α=3(π18+πn9)tanα=tan(π18+πn9)[3tan2(π18+πn9)]13tan2(π18+πn9)=tan(π9(12+n)[3tan2(π9(12+n)]13tan2(π9(12+n){π9(12+n)π2+kπ13tan2(π9(12+n))0{n4+9k(kZ+)n1+kandn9k2doncn2kkZk>1So,αisnotalsotrue

Terms of Service

Privacy Policy

Contact: info@tinkutara.com