Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182271 by SANOGO last updated on 06/Dec/22

Answered by SEKRET last updated on 06/Dec/22

    ((−𝛑)/2)∙ln(2)

π2ln(2)

Answered by SEKRET last updated on 06/Dec/22

     ∫_a ^( b) f(x)dx=∫_a ^b f(a+b−x) dx   ∫_0 ^( (𝛑/2)) ln(sinx) dx =  I    ∫_0 ^( (𝛑/2)) ln(cos(x)) dx= I     ∫_0 ^( (𝛑/2)) ln(((sin(2x))/2)) dx =  2I     ∫_0 ^( (𝛑/2)) ln(sin(2x)) dx −∫_0 ^( (𝛑/2)) ln(2)dx=2I    ∫_0 ^( 𝛑) (1/2)∙ln(sin(x)) dx −(𝛑/2)∙ln(2)= 2I     (1/2)∙(∫_0 ^( (𝛑/2)) ln(sinx)dx+∫_(𝛑/2) ^( 𝛑) ln(sinx)dx)−((𝛑∙ln(2))/2)=2I    (1/2)(I+I) − (𝛑/2)∙ln(2)=2I      I = ((−π)/2) ∙ln(2)    ABDULAZIZ    ABDUVALIYEV

abf(x)dx=abf(a+bx)dx0π2ln(sinx)dx=I0π2ln(cos(x))dx=I0π2ln(sin(2x)2)dx=2I0π2ln(sin(2x))dx0π2ln(2)dx=2I0π12ln(sin(x))dxπ2ln(2)=2I12(0π2ln(sinx)dx+π2πln(sinx)dx)πln(2)2=2I12(I+I)π2ln(2)=2II=π2ln(2)ABDULAZIZABDUVALIYEV

Commented by SEKRET last updated on 06/Dec/22

∫_0 ^(𝛑/2) ln(sinx)dx=∫_(𝛑/2) ^^𝛑  ln(sinx)dx=I

0π2ln(sinx)dx=π2πln(sinx)dx=I

Commented by SANOGO last updated on 06/Dec/22

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com