Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182500 by mr W last updated on 10/Dec/22

Commented by mr W last updated on 10/Dec/22

this time our goat is flexibly tied on  a fence with a rope of length 3m. the  fence has the shape of an ellipse with  semi−axex of 10 m and 6 m respectively.  find the maximum area where the  goat can graze.

thistimeourgoatisflexiblytiedonafencewitharopeoflength3m.thefencehastheshapeofanellipsewithsemiaxexof10mand6mrespectively.findthemaximumareawherethegoatcangraze.

Answered by mr W last updated on 10/Dec/22

Commented by mr W last updated on 10/Dec/22

a=10, b=6, c=3  let μ=(b/a), λ=(c/a)  say P(a cos φ, b sin φ)  −(1/(tan θ))=((b cos φ)/(−a sin θ))  ⇒tan θ=((tan φ)/μ)  x_Q =a cos φ+c cos θ  y_Q =b sin φ+c sin θ  (x_Q /a)=ξ=cos φ+((λμ)/( (√(μ^2 +tan^2  φ))))  (y_Q /a)=η=μ sin φ+((λ tan φ)/( (√(μ^2 +tan^2  φ))))  A_I =∫y_Q dx_Q   (A_I /a^2 )=∫ηdξ=∫_0 ^(π/2) (μ sin φ+((λ tan φ)/( (√(μ^2 +tan^2  φ)))))(sin φ+((λμ tan φ)/(cos^2  φ (μ^2 +tan^2  φ)^(3/2) )))dφ=δ  δ=∫_0 ^(π/2) (μ sin φ+((λ tan φ)/( (√(μ^2 +tan^2  φ)))))(sin φ+((λμ tan φ)/(cos^2  φ (μ^2 +tan^2  φ)^(3/2) )))dφ  A_(grazing) =4A_I −πab=4δa^2 −πab  A_(grazing) =(((4δ)/μ)−π)ab  example:  μ=(6/(10))=0.6, λ=(3/(10))=0.3  δ≈0.924 829 716  A_(grazing) =(((4δ)/(0.6))−π)×60≈181.436 m^2     an approximation as ellipse is  A_(grazing) ≈π[(a+c)(b+c)−ab]=π(a+b+c)c        =(10+6+3)π=179.07 m^2

a=10,b=6,c=3letμ=ba,λ=casayP(acosϕ,bsinϕ)1tanθ=bcosϕasinθtanθ=tanϕμxQ=acosϕ+ccosθyQ=bsinϕ+csinθxQa=ξ=cosϕ+λμμ2+tan2ϕyQa=η=μsinϕ+λtanϕμ2+tan2ϕAI=yQdxQAIa2=ηdξ=0π2(μsinϕ+λtanϕμ2+tan2ϕ)(sinϕ+λμtanϕcos2ϕ(μ2+tan2ϕ)3/2)dϕ=δδ=0π2(μsinϕ+λtanϕμ2+tan2ϕ)(sinϕ+λμtanϕcos2ϕ(μ2+tan2ϕ)3/2)dϕAgrazing=4AIπab=4δa2πabAgrazing=(4δμπ)abexample:μ=610=0.6,λ=310=0.3δ0.924829716Agrazing=(4δ0.6π)×60181.436m2anapproximationasellipseisAgrazingπ[(a+c)(b+c)ab]=π(a+b+c)c=(10+6+3)π=179.07m2

Commented by mr W last updated on 10/Dec/22

Commented by mr W last updated on 10/Dec/22

we see the grazing area is very close  to a perfect ellipse (x^2 /((a+c)^2 ))+(y^2 /((b+c)^2 ))=1.

weseethegrazingareaisveryclosetoaperfectellipsex2(a+c)2+y2(b+c)2=1.

Commented by Acem last updated on 10/Dec/22

So nice

Sonice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com