Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182829 by yaslm last updated on 14/Dec/22

Answered by cortano1 last updated on 15/Dec/22

 L= lim_(x→(π/6))  ((2sin x−1)/( (√3) sec x−2))   = lim_(x→(π/6))  ((cos x(2sin x−1))/( (√3)−2cos x))   = (1/2)(√3) ×lim_(x→(π/6))  ((2sin x−1)/( (√3)−2cos x))  [ let x=(π/6)+y ]  L=(1/2)(√3) lim_(y→0)  ((2sin (y+(π/6))−1)/( (√3)−2cos (y+(π/6))))   = (1/2)(√3) ×lim_(y→0)  ((2((1/( 2 ))(√3) sin y+(1/2)cos y)−1)/( (√3)−2((1/2)(√3) cos y−(1/2)sin y)))  =(1/2)(√3) ×lim_(y→0)  (((√3) sin y+cos y−1)/( (√3)−(√3)cos y+sin y))  =(1/2)(√3) ×lim_(y→0)  (((√3)sin y−2sin^2 ((1/2)y))/( 2(√3) sin^2 ((1/2)y)+sin y))  =(1/2)(√3) ×lim_(y→0)  ((2(√3) cos ((1/2)y)−2sin ((1/2)y))/(2(√3)sin ((1/2)y)+2cos ((1/2)y)))   = (1/2)(√3) ×((2(√3))/2) = (3/2)

L=limxπ62sinx13secx2=limxπ6cosx(2sinx1)32cosx=123×limxπ62sinx132cosx[letx=π6+y]L=123limy02sin(y+π6)132cos(y+π6)=123×limy02(123siny+12cosy)132(123cosy12siny)=123×limy03siny+cosy133cosy+siny=123×limy03siny2sin2(12y)23sin2(12y)+siny=123×limy023cos(12y)2sin(12y)23sin(12y)+2cos(12y)=123×232=32

Answered by ARUNG_Brandon_MBU last updated on 15/Dec/22

L=lim_(x→(π/6)) ((2sinx−1)/( (√3)secx−2))=lim_(x→(π/6)) ((2sinxcosx−cosx)/( (√3)−2cosx))      =lim_(x→(π/6)) ((sin2x−cosx)/( (√3)−2cosx))=lim_(t→0) ((sin((π/3)−2t)−cos((π/6)−t))/( (√3)−2cos((π/6)−t)))      =lim_(t→0) ((((√3)/2)cos2t−(1/2)sin2t−((√3)/2)cost−(1/2)sint)/( (√3)−(√3)cost−sint))      =lim_(t→0) ((((√3)/2)(1−2t^2 )−t−((√3)/2)(1−(t^2 /2))−(t/2))/( (√3)−(√3)(1−(t^2 /2))−t))      =lim_(t→0) ((−(√3)t^2 −((3t)/2)+(((√3)t^2 )/4))/((t^2 /2)−t))=(3/2)

L=limxπ62sinx13secx2=limxπ62sinxcosxcosx32cosx=limxπ6sin2xcosx32cosx=limt0sin(π32t)cos(π6t)32cos(π6t)=limt032cos2t12sin2t32cost12sint33costsint=limt032(12t2)t32(1t22)t233(1t22)t=limt03t23t2+3t24t22t=32

Answered by malwan last updated on 15/Dec/22

lim_(x→(π/6))  ((2(sin x − (1/2)))/(((√3)/(cos x)) −2))  =lim_(x→(π/6))  ((2cosx(sinx−sin(π/6)))/(2(cos(π/6)−cosx)))  =lim_(x→(π/6))  ((((√3)/2)(2cos((x/2)+(π/(12)))sin((x/2)−(π/(12))))/(−2sin((π/(12))+x)sin((π/(12))−(x/(12)))))  =((((√3)/2)×((√3)/2))/(1/2)) = (3/2)

limxπ62(sinx12)3cosx2=limxπ62cosx(sinxsinπ6)2(cosπ6cosx)=limxπ632(2cos(x2+π12)sin(x2π12)2sin(π12+x)sin(π12x12)=32×3212=32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com