Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182973 by HeferH last updated on 17/Dec/22

Answered by Rasheed.Sindhi last updated on 18/Dec/22

x^2 +x+1=0 ; Σ_(n=1) ^(27) (x^n +(1/x^n ))^2 =?  (x^n +(1/x^n ))^2 =x^(2n) +(1/x^(2n) )+2  S_(27) =Σ_(n=1) ^(27) (x^n +(1/x^n ))^2 =Σ_(n=1) ^(27) x^(2n) +Σ_(n=1) ^(27) (1/x^(2n) )+Σ_(n=1) ^(27) 2  =27(2)+(x^2 +x^4 +x^6 +...x^(54) )+(x^(−2) +x^(−4) +x^(−6) +...x^(−54) )  =54+((x^2 (1−(x^2 )^(27) ))/(1−x^2 ))+((x^(−2) (1−(x^(−2) )^(27) ))/(1−x^(−2) ))  =54+((x^2 −x^(56) )/(1−x^2 ))+((x^(−2) −x^(−56) )/(1−x^(−2) )) ★     x^2 +x+1=0⇒x^2 =−x−1  ⇒x^3 =−x^2 −x=−(−x−1)−x=1  ⇒x^3 =1  •x^(56) =(x^3 )^(18) ∙x^2 =1^(18) (−x−1)=−x−1  •x^(−56) =(x^3 )^(−19) ∙x=(1)^(−19) ∙x=x  •x^(−2) =(x^3 )^(−1) ∙x=(1)^(−1) ∙x=x     S_(27) =54+((x^2 −x^(56) )/(1−x^2 ))+((x^(−2) −x^(−56) )/(1−x^(−2) ))  =54+(((−x−1)−(−x−1))/(1−(−x−1)))+(((x)−(x))/(1−(x)))  =54

x2+x+1=0;Σ27n=1(xn+1xn)2=?(xn+1xn)2=x2n+1x2n+2S27=27n=1(xn+1xn)2=Σ27n=1x2n+Σ27n=11x2n+Σ27n=12=27(2)+(x2+x4+x6+...x54)+(x2+x4+x6+...x54)=54+x2(1(x2)27)1x2+x2(1(x2)27)1x2=54+x2x561x2+x2x561x2x2+x+1=0x2=x1x3=x2x=(x1)x=1x3=1x56=(x3)18x2=118(x1)=x1x56=(x3)19x=(1)19x=xx2=(x3)1x=(1)1x=xS27=54+x2x561x2+x2x561x2=54+(x1)(x1)1(x1)+(x)(x)1(x)=54

Commented by Rasheed.Sindhi last updated on 18/Dec/22

Or in  somewhat shorter way  ★S_(27) =54+((x^2 −x^(56) )/(1−x^2 ))+((x^(−2) −x^(−56) )/(1−x^(−2) ))           x^2 +x+1=0⇒x^2 =−x−1       ⇒x^3 =−x^2 −x=−(−x−1)−x=1     S_(27) =54+((x^2 −(x^3 )^(18) ∙x^2 )/(1−x^2 ))+((x^(−2) −(x^3 )^(−18) ∙x^(−2) )/(1−x^(−2) ))  S_(27) =54+((x^2 −(1)^(18) ∙x^2 )/(1−x^2 ))+((x^(−2) −(1)^(−18) ∙x^(−2) )/(1−x^(−2) ))  S_(27) =54+((x^2 −x^2 )/(1−x^2 ))+((x^(−2) −x^(−2) )/(1−x^(−2) ))  =54

OrinsomewhatshorterwayS27=54+x2x561x2+x2x561x2x2+x+1=0x2=x1x3=x2x=(x1)x=1S27=54+x2(x3)18x21x2+x2(x3)18x21x2S27=54+x2(1)18x21x2+x2(1)18x21x2S27=54+x2x21x2+x2x21x2=54

Answered by TANMAY PANACEA last updated on 18/Dec/22

Commented by mr W last updated on 18/Dec/22

welcome back sir!  you seem to have taken a long break.

welcomebacksir!youseemtohavetakenalongbreak.

Commented by Rasheed.Sindhi last updated on 18/Dec/22

Tanmay sir, happy to see you again!

Tanmaysir,happytoseeyouagain!

Answered by TheSupreme last updated on 18/Dec/22

x+1+(1/x)=0 →(1/x)=−x−1  Σ_(n=1) ^(27) x^(2n) +(1/x^(2n) )+2=  =((1−x^(2∗27−1) )/(1−x))−1+((1−(1/x^(2∗27−1) ))/(1−(1/x)))−1+2∙27=  =((1−x^(53) )/(1−x))−((1−x^(53) )/(x^(52) (1−x)))+52  =((1−x^(53) )/(1−x))[1−(1/x^(52) )]+52=  =  x^2 +x+1=0→x_(1,2) =((−1±(√(−3)))/2)=e^(±(π/3)i)    Σ(e^(k(π/3)i) +e^(−k(π/3)i) )^2 =Σ4cos^2 (k(π/3))=  =Σ_(n=1) ^9 4cos^2 (0)+4cos^2 ((π/3))+4cos^2 ((2π)/3)=  =4Σ_(n=1) ^9 1+(1/4)+(1/4)=6∙9 =54

x+1+1x=01x=x127n=1x2n+1x2n+2==1x22711x1+11x227111x1+227==1x531x1x53x52(1x)+52=1x531x[11x52]+52==x2+x+1=0x1,2=1±32=e±π3iΣ(ekπ3i+ekπ3i)2=Σ4cos2(kπ3)==9n=14cos2(0)+4cos2(π3)+4cos22π3==49n=11+14+14=69=54

Terms of Service

Privacy Policy

Contact: info@tinkutara.com