Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 192469 by Mingma last updated on 18/May/23

Answered by a.lgnaoui last updated on 19/May/23

△ABC  triangle isocele  AB=AC  donc  ∡B=∡C=90−((78)/2)=51°        ((sin 78)/(BC))=((sin 51)/(AC))               (1)  △ABD    AB=BD   ∡CAD=A_1                        ((sin x)/(AD))=((sin( 78−A_1 ))/(BD))                BDsin x=ADsin (78−A_1 )          BD=((ADsin (78−A_1 ))/(sin x))     (2)               △ACD   ∡C=∡B=51   ∡ADC=51−30=21  ⇒ ((sin 21)/(AD))=((sin A_1 )/(CD))=((sin (180−21−A_1 ))/(AC))       =((sin(15 9−A_1 ))/(AC))         ADsin A_1 =CDsin 21        (3)               (1)   (2)⇒     △BCD   ∡DBC=51−x      ((sin (51−x))/(CD))=((sin 30)/(BD))                   BD=((CDsin 30)/(sin (51−x)))  (2)⇒  ((CDsin 30)/(sin (51−x)))=((ADsin (78−A))/(sin x))               dapres (3)      AD sin A=CDsin 21                CD=((ADsin A)/(sin 21))              (5)        ((sin Asin 30)/(sin 21.sin (51−x)))=((sin (78−A))/(sin x))                                           △ABD  ∡BDA=∡BAD=78−A_1        ⇒x+2(78−A_1 )=180          x_1 +156−2A_1 =180   A_1 =(x/2)−12  ⇒  78−A_1 =90−(x/2)  sin (78−A_1 )=cos (x/2)         Equation est        sinx.cos((x/2)−12)sin 30=cos (x/2).sin (51−x)sin 21       (1/2) sin x(cos (x/2)cos 12+sin (x/2)sin 12=  =sin 21(cos (x/2))(sin 51.cos x−cos 51sin x)  divisons  les 2 memvees par  cos (x/2)     (1/2)sin x.cos 12+tan (x/2)sin 12=  =sin 21(sin 51cos x−cos 51sin x)    posons    t=tan (x/2)  sin x= ((2t)/(1+t^2 ))               cos x=((1−t^2 )/(1+t^2 ))    (t/(1+t^2 ))cos 12+tsin 12=sin 21(sin 51(((1−t^2 )/(1+t^2 )))−cos 51((2t)/(1+t^2 )))  ((cos 12.t)/(1+t^2 ))+((sin 12(t(1+t^2 ))/(1+t^2 ))=((sin 21.sin 51(1−t^2 ))/(1+t^2 ))−((2sin 21sin 51t)/(1+t^2 ))    ((sin 12.t^3 +(sin 21.sin 51)t^2 +(sin 12+cos 12+2sin 21cos 51)t−sin 21.sin 51)/(1+t^2 ))=0      sin 12=0,2079117          cos 12=0,9781476  sin 51=0,777146     cos 51=0,629320  sin 21=0,35836       0,2079117 t^3 +0,278504 t^2 + 0,663613t+0,278504=0    la  resolutiin donne  (x/2)=tan^(−1) (0,734)  soit    x=72,5°

ABCtriangleisoceleAB=ACdoncB=C=90782=51°sin78BC=sin51AC(1)ABDAB=BDCAD=A1sinxAD=sin(78A1)BDBDsinx=ADsin(78A1)BD=ADsin(78A1)sinx(2)ACDC=B=51ADC=5130=21sin21AD=sinA1CD=sin(18021A1)AC=sin(159A1)ACADsinA1=CDsin21(3)(1)(2)BCDDBC=51xsin(51x)CD=sin30BDBD=CDsin30sin(51x)(2)CDsin30sin(51x)=ADsin(78A)sinxdapres(3)ADsinA=CDsin21CD=ADsinAsin21(5)sinAsin30sin21.sin(51x)=sin(78A)sinxABDBDA=BAD=78A1x+2(78A1)=180x1+1562A1=180A1=x21278A1=90x2sin(78A1)=cosx2Equationestsinx.cos(x212)sin30=cosx2.sin(51x)sin2112sinx(cosx2cos12+sinx2sin12==sin21(cosx2)(sin51.cosxcos51sinx)divisonsles2memveesparcosx212sinx.cos12+tanx2sin12==sin21(sin51cosxcos51sinx)posonst=tanx2sinx=2t1+t2cosx=1t21+t2t1+t2cos12+tsin12=sin21(sin51(1t21+t2)cos512t1+t2)cos12.t1+t2+sin12(t(1+t2)1+t2=sin21.sin51(1t2)1+t22sin21sin51t1+t2sin12.t3+(sin21.sin51)t2+(sin12+cos12+2sin21cos51)tsin21.sin511+t2=0sin12=0,2079117cos12=0,9781476sin51=0,777146cos51=0,629320sin21=0,358360,2079117t3+0,278504t2+0,663613t+0,278504=0laresolutiindonnex2=tan1(0,734)soitx=72,5°

Commented by a.lgnaoui last updated on 19/May/23

Answered by HeferH last updated on 19/May/23

Commented by Mingma last updated on 21/May/23

Perfect ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com