Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 194236 by MrGHK last updated on 01/Jul/23

Answered by witcher3 last updated on 03/Jul/23

S=Σ_(n≥0) (((−1)^n )/(n!(zn+1)k^n ))  =Σ_(n≥0) ∫(((−1)/k))^n .(1/(n!))∫_0 ^1 t^(zn) dt  =∫_0 ^1 Σ_(n≥0) (−(t^z /k))^n .(1/(n!))dt  =∫_0 ^1 e^(−(t^z /k)) dt  t=(kw)^(1/z) ⇒dt=(1/z)k^(1/z) .w^((1/z)−1) dw  =(k^(1/z) /z)∫_0 ^(1/k) e^(−w) w^((1/z)−1) dw  Γ(a,z)=∫_z ^∞ t^(a−1) e^(−t) dt..complet Gamma function  S.zk^(−(1/z)) =∫_0 ^∞ e^(−w) w^((1/z)−1) dw−∫_(1/k) ^∞ e^(−w) w^((1/z)−1) dw  =Γ((1/z))−Γ((1/z),(1/k))  S=(k^(1/z) /z)(Γ((1/z))−Γ((1/z),1))

S=n0(1)nn!(zn+1)kn=n0(1k)n.1n!01tzndt=01n0(tzk)n.1n!dt=01etzkdtt=(kw)1zdt=1zk1z.w1z1dw=k1zz01keww1z1dwΓ(a,z)=zta1etdt..completGammafunctionS.zk1z=0eww1z1dw1keww1z1dw=Γ(1z)Γ(1z,1k)S=k1zz(Γ(1z)Γ(1z,1))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com