All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 195910 by Calculusboy last updated on 13/Aug/23
Answered by witcher3 last updated on 20/Aug/23
Methodeofdifferentiation?A=ln(2)∫01x2−1ln(x)dxA(a)=ln(2)∫01xa−1ln(x)dx,a⩾0x→xa−1ln(x),x→1,a>0=x−1ln(x).xa−1x−1,x−1ln(x)→1xa−1x−1→a⇒xa−1ln(x)→a,integrablenear1,near0→0alsoitsriemannintegrabl+continuity⇒uniformalycontinue∀x∈[0,1]x→xa−1ln(x)isdifferwntiableasfunctionofvariablea⇒wecanswitch∫and∂inEA(0)=0,A=∫02A′daA′=ln(2)∫01∂aealn(x)−1ln(x)dx=∫01xadx=1a+1..EA=ln(2)∫021a+1da=ln(2)ln(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com