All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 19604 by ajfour last updated on 13/Aug/17
Commented by ajfour last updated on 13/Aug/17
solutiontoQ.19508Toprovep=∣z1−z0∣=∣α¯z1+αz¯1+2c2∣α∣∣
Answered by ajfour last updated on 13/Aug/17
zF=α(seeQ.19592)z0=z1−λαandz¯0=z¯1−λα¯asz0liesonlineα¯z+αz¯+2c=0wehaveα¯(z1−λα)+α(z¯1−λα¯)+2c=0orα¯z1+αz¯1+2c=2λ∣α∣2...(i)p=∣z1−z0∣=∣λα∣=∣λ∣∣α∣using(i)weget:p=∣z1−z0∣=∣α¯z1+αz¯1+2c2∣α∣∣.
Commented by Tinkutara last updated on 13/Aug/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com