Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 196714 by mr W last updated on 30/Aug/23

Answered by som(math1967) last updated on 30/Aug/23

 (1/a)+(1/b)+(1/c)=(1/(a+b+c))  ⇒(a+b+c)(ab+bc+ca)−abc=0  ⇒(a+b)(b+c)(c+a)=0   a+b=0⇒a=−b⇒c=2022   (1/a^(2023) )+(1/b^(2023) )+(1/c^(2023) )  ⇒(1/a^(2023) )−(1/a^(2023) )+(1/((2022)^(2023) ))  ⇒(1/((2022)^(2023) ))

1a+1b+1c=1a+b+c(a+b+c)(ab+bc+ca)abc=0(a+b)(b+c)(c+a)=0a+b=0a=bc=20221a2023+1b2023+1c20231a20231a2023+1(2022)20231(2022)2023

Commented by mr W last updated on 30/Aug/23

very nice!

verynice!

Answered by Rasheed.Sindhi last updated on 30/Aug/23

a+b+c=2022, (1/a)+(1/b)+(1/c)=(1/(2022))  (1/a^(2023) )+(1/b^(2023) )+(1/c^(2023) )=?  ((a+b)/(ab))=(1/(2022))−(1/c)            =(1/(2022))−(1/(2022−(a+b)))        =((2022−(a+b)−2022)/(2022( 2022−(a+b) )))        =((a+b)/(2022((a+b)− 2022)))  ((a+b)/(ab))−((a+b)/(2022((a+b)− 2022)))=0  (a+b)((1/(ab))−(1/(2022((a+b)− 2022))))=0  a=−b^★  ∣ (1/(2022((a+b)− 20222)))=(1/(ab))  2022(a+b)−2022^2 −ab=0  (2022−a)(b−2022)=0    a=2022 ∣ b=2022  a+b+c=2022  2022+2022+c=2022  c=−2022  (1/a^(2023) )+(1/b^(2023) )+(1/c^(2023) )  =(1/(2022^(2023) ))+(1/(2022^(2023) ))+(1/((−2022)^(2023) ))  =(1/(2022^(2023) ))+(1/(2022^(2023) ))−(1/(2022^(2023) ))  =(1/(2022^(2023) )) ✓  ^★  a=−b       a+b+c=2022⇒−b+b+c=2022  ⇒c=2022  (1/a^(2023) )+(1/b^(2023) )+(1/c^(2023) )  (1/((−b)^(2023) ))+(1/b^(2023) )+(1/((2022)^(2023) ))  =(1/((2022)^(2023) )) ✓

a+b+c=2022,1a+1b+1c=120221a2023+1b2023+1c2023=?a+bab=120221c=1202212022(a+b)=2022(a+b)20222022(2022(a+b))=a+b2022((a+b)2022)a+baba+b2022((a+b)2022)=0(a+b)(1ab12022((a+b)2022))=0a=b12022((a+b)20222)=1ab2022(a+b)20222ab=0(2022a)(b2022)=0a=2022b=2022a+b+c=20222022+2022+c=2022c=20221a2023+1b2023+1c2023=120222023+120222023+1(2022)2023=120222023+120222023120222023=120222023a=ba+b+c=2022b+b+c=2022c=20221a2023+1b2023+1c20231(b)2023+1b2023+1(2022)2023=1(2022)2023

Commented by mr W last updated on 30/Aug/23

thanks!

thanks!

Answered by Rasheed.Sindhi last updated on 30/Aug/23

a+b+c=2022 , (1/a)+(1/b)+(1/c)=(1/(2022))  (1/a^(2023) )+(1/b^(2023) )+(1/c^(2023) )=?  (1/a)+(1/b)+(1/c)=(1/(2022))  ⇒ab+bc+ca=((abc)/(2022))  Let a,b,c are roots of an equation.  Equation will be:  x^3 −(a+b+c)x^2 +(ab+bc+ca)x−abc=0  x^3 −2022x^2 +(((abc)/(2022)))x−abc=0  2022x^3 −2022^2 x^2 +abcx−2022abc=0  2022x^2 (x−2022)+abc(x−2022)=0  (x−2022)(2022x^2 +abc)=0  x=2022 ∣ 2022x^2 +abc=0   let a=2022 ∣ 2022x^2 +2022bc=0                            ∣ x^2 =−bc                            ∣ x=±(√(−bc))                       ∣ Let  b=(√(−bc)) & c=−(√(−bc))              b+c=0⇒c=−b  (1/a^(2023) )+(1/b^(2023) )+(1/c^(2023) )  =(1/(2022^(2023) ))+(1/((b)^(2023) ))+(1/((−b)^(2023) ))  =(1/(2022^(2023) ))+(1/((b)^(2023) ))−(1/((b)^(2023) ))  =(1/(2022^(2023) )) ✓

a+b+c=2022,1a+1b+1c=120221a2023+1b2023+1c2023=?1a+1b+1c=12022ab+bc+ca=abc2022Leta,b,carerootsofanequation.Equationwillbe:x3(a+b+c)x2+(ab+bc+ca)xabc=0x32022x2+(abc2022)xabc=02022x320222x2+abcx2022abc=02022x2(x2022)+abc(x2022)=0(x2022)(2022x2+abc)=0x=20222022x2+abc=0leta=20222022x2+2022bc=0x2=bcx=±bcLetb=bc&c=bcb+c=0c=b1a2023+1b2023+1c2023=120222023+1(b)2023+1(b)2023=120222023+1(b)20231(b)2023=120222023

Terms of Service

Privacy Policy

Contact: info@tinkutara.com