All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 196886 by Amidip last updated on 02/Sep/23
Answered by MM42 last updated on 02/Sep/23
tan(α+β)=tanα+tanβ1−tanαtanβ=pq−1⇒pq−1=sin2(α+β)sin(α+β)cos(α+β)⇒psin(α+β)cos(α+β)=(q−1)sin2(α+β))⇒sin2(α+β)+psin(α+β)cos(α+β)=qsin2(α+β)✓
Answered by HeferH last updated on 02/Sep/23
(x−tana)(x−tanb)=0x2−x(tana+tanb)+tanatanb=0p=−(tana+tanb)q=tanatanbsin2(a+b)+psin(a+b)cos(a+b)+qcos2(a+b)=qsin2(a+b)+psin(a+b)cos(a+b)=qsin2(a+b)1+pcot(a+b)=qcot(a+b)=q−1pq−1p=1−tanatanb(tana+tanb)=tan−1(a+b)=cot(a+b)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com