All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 196934 by Amidip last updated on 03/Sep/23
Answered by aleks041103 last updated on 04/Sep/23
M(x,y)dx+N(x,y)dy=0if∂yM=∂xN,then∃F(x,y):M(x,y)dx+N(x,y)dy=dF=0⇒F=const.inourcase∂yM≠∂xNfindintegratingfactorq(x,y),s.t.∂y(qM)=∂x(qN)1)supposeq=q(x)⇒q∂yM=q∂xN+q′N⇒Nq′=q(∂yM−∂xN)inourcase:(4x3y3−3x2)q′=q(24x2y3+6x−12x2y3+6x)⇒q′/q=12x2y3+12x4x3y3−3x2≠f(x)2)supposeq=q(y)q∂yM+Mq′=q∂xN⇒q′q=−∂yM−∂xNMq′q=−12(x2y3+x)6(x2y4+xy)=−2y⇒d(ln(q)+2ln(y))=0⇒q=1y2⇒6(x2y4+xy)dx+(4x3y3−3x2)dy=0⇒(6x2y2+6xy)dx+(4x3y−3x2y2)dy=dF=0∂xF=M=6x2y2+6xy⇒F=2x3y2+3x2y+f(y)⇒∂yF=4x3y−3x2y2+f′=N=4x3y−3x2y2⇒f′=0⇒f=c=const.⇒F(x,y)=2x3y2+3x2y=const.⇒Thesolutionsarethecurvesgivenby:2x3y3+3x2−αy=0,∀α∈R
Terms of Service
Privacy Policy
Contact: info@tinkutara.com