Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 196934 by Amidip last updated on 03/Sep/23

Answered by aleks041103 last updated on 04/Sep/23

M(x,y)dx+N(x,y)dy=0  if  ∂_y M=∂_x N, then ∃F(x,y):  M(x,y)dx+N(x,y)dy=dF=0⇒F=const.  in our case ∂_y M≠∂_x N  find integrating factor q(x,y), s.t.  ∂_y (qM)=∂_x (qN)  1)suppose q=q(x)  ⇒q∂_y M=q∂_x N+q ′ N⇒Nq′=q(∂_y M−∂_x N)  in our case:  (4x^3 y^3 −3x^2 )q′=q(24x^2 y^3 +6x−12x^2 y^3 +6x)  ⇒q′/q=((12x^2 y^3 +12x)/(4x^3 y^3 −3x^2 ))≠f(x)  2)suppose q=q(y)  q∂_y M+Mq′=q∂_x N⇒((q′)/q)=−((∂_y M−∂_x N)/M)  ((q′)/q)=−((12(x^2 y^3 +x))/(6(x^2 y^4 +xy)))=((−2)/y)  ⇒d(ln(q)+2ln(y))=0⇒q=(1/y^2 )  ⇒6(x^2 y^4 +xy)dx+(4x^3 y^3 −3x^2 )dy=0  ⇒(6x^2 y^2 +((6x)/y))dx+(4x^3 y−((3x^2 )/y^2 ))dy=dF=0  ∂_x F=M=6x^2 y^2 +((6x)/y)⇒F=2x^3 y^2 +((3x^2 )/y)+f(y)  ⇒∂_y F=4x^3 y−((3x^2 )/y^2 )+f ′=N=4x^3 y−((3x^2 )/y^2 )  ⇒f ′=0⇒f=c=const.  ⇒F(x,y)=2x^3 y^2 +((3x^2 )/y)=const.  ⇒The solutions are the curves given by:  2x^3 y^3 +3x^2 −αy=0, ∀α∈R

M(x,y)dx+N(x,y)dy=0ifyM=xN,thenF(x,y):M(x,y)dx+N(x,y)dy=dF=0F=const.inourcaseyMxNfindintegratingfactorq(x,y),s.t.y(qM)=x(qN)1)supposeq=q(x)qyM=qxN+qNNq=q(yMxN)inourcase:(4x3y33x2)q=q(24x2y3+6x12x2y3+6x)q/q=12x2y3+12x4x3y33x2f(x)2)supposeq=q(y)qyM+Mq=qxNqq=yMxNMqq=12(x2y3+x)6(x2y4+xy)=2yd(ln(q)+2ln(y))=0q=1y26(x2y4+xy)dx+(4x3y33x2)dy=0(6x2y2+6xy)dx+(4x3y3x2y2)dy=dF=0xF=M=6x2y2+6xyF=2x3y2+3x2y+f(y)yF=4x3y3x2y2+f=N=4x3y3x2y2f=0f=c=const.F(x,y)=2x3y2+3x2y=const.Thesolutionsarethecurvesgivenby:2x3y3+3x2αy=0,αR

Terms of Service

Privacy Policy

Contact: info@tinkutara.com