Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197050 by Skabetix last updated on 06/Sep/23

Commented by TheHoneyCat last updated on 07/Sep/23

Maintenant, 2b  Y_k =(((Σ_(k=1) ^n x^k )−n)/(x−1))  =(((Σ_(k=1) ^n x^k )−(Σ_(k=1) ^n 1))/(x−1))  =Σ_(k=1) ^n ((x^k −1)/(x−1))    d′ou  lim_(x→1) Y_k =Σ_(k=1) ^n k=((n(n+1))/2)

Maintenant,2bYk=(nk=1xk)nx1=(nk=1xk)(nk=11)x1=nk=1xk1x1doulimx1Yk=nk=1k=n(n+1)2

Commented by TheHoneyCat last updated on 07/Sep/23

Commencons par 2a  mq ∀k∈N^∗  lim_(x→1) (((x^k −1)/(x−1)))=k  X_k =(1/(x−1))(x^k −1)  =(1/(x−1))(x−1)Σ_(κ=0) ^(k−1) x^κ   =Σ_(κ=0) ^(k−1) x^κ   d′ou:  lim_(x→∞) X_k =Σ_(κ=0) ^(k−1) x^κ =Σ_(κ=0) ^(k−1) 1=k

Commenconspar2amqkNlimx1(xk1x1)=kXk=1x1(xk1)=1x1(x1)k1κ=0xκ=k1κ=0xκdou:limxXk=k1κ=0xκ=k1κ=01=k

Commented by Skabetix last updated on 07/Sep/23

Merci beaucoup, je vais essayer de comprendre votre correction

Mercibeaucoup,jevaisessayerdecomprendrevotrecorrection

Commented by TheHoneyCat last updated on 07/Sep/23

j'ai un peu la flemme de réfléchir sur la 2c... mais si jamais ça bloque toujours, répondez à ce commentaire, ça me fera une notif' et je me pencherai sérieusement dessus.

Answered by Skabetix last updated on 06/Sep/23

I need help for the 2^(nd)  question please  Thanks in advance

Ineedhelpforthe2ndquestionpleaseThanksinadvance

Answered by witcher3 last updated on 12/Sep/23

2c  n(n+1)=Σ_(k=1) ^n 2k  ⇔Σ_(k=1) ^n ((2k(x^(k−1) −1))/(x−1))==Σ_(k=1) ^(n−1) ((2(k+1)(x^k −1))/((x−1)))  =Σ_(k=1) ^(n−1) 2k(k+1)=(2/3)Σ_1 ^(n−1) ((k+1)^3 −k^3 −1)  =((2n(n^2 −1))/3)

2cn(n+1)=nk=12knk=12k(xk11)x1==n1k=12(k+1)(xk1)(x1)=n1k=12k(k+1)=23n11((k+1)3k31)=2n(n21)3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com