All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 197239 by universe last updated on 10/Sep/23
Answered by mahdipoor last updated on 11/Sep/23
⇒ddxxsinnx=(xsinnxn−(n−1)xsinn−2cos2xn−sinn−1xcosxn)+(sinn−1xcosxn)+f(n)×(xsinn−2x)⇒⇒xsinn−2x(sin2x−sin2xn+(n−1)cos2xn)=xsinn−2x((n−1)sin2xn+(n−1)cos2xn)=xsinn−2x×(n−1n)=xsinn−2x×f(n)⇒f(n)=n−1n
Terms of Service
Privacy Policy
Contact: info@tinkutara.com