All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 197795 by cortano12 last updated on 29/Sep/23
Answered by mr W last updated on 29/Sep/23
(1)x+y=x2+y2(x−12)2+(y−12)2=(12)2x=12+12cosθy=12+12sinθt=x+y=1+sin(π4+θ)=1+sinα∈[0,2]x3+y3=(x+y)3−32(x+y)[(x+y)2−x2−y2]x3+y3=12(x+y)2[3−(x+y)]x3+y3=12t2(3−t)∈[0,2](2)let2x=a≠0,2y=b≠0a+b=a2+b28x+8y=a3+b3∈(0,2]
Answered by Frix last updated on 29/Sep/23
x2+y2−x−y=0Letx=u−v∧y=u+v∧v⩾02(u2+v2−u)=0v=u−u2⇒x+y=x2+y2=2ux3+y3=2u2(3−2u)Ifx,y∈R⇒0⩽u⩽1⇒0⩽x3+y3⩽2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com