All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 198420 by Mingma last updated on 19/Oct/23
Answered by Frix last updated on 19/Oct/23
∫x2(3+4x−4x2)32dx=t=2+3+4x−4x22x−1dx=−(2x−1)3+4x−4x24t=−116∫(t2+4t+1)2(t−1)2(t+1)2(t2+1)dt==∫(−932(t−1)2−132(t+1)2+14(t2+1))dt==932(t−1)+132(t+1)+tan−1t4==5t+416(t2−1)+tan−1t4==10x+3323+4x−4x2+tan−12+3+4x−4x22x−14+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com