Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 118452 by 2004 last updated on 17/Oct/20

Question:  2^x +2^(2x+1) +1=y^2    solve this equation if  x,y𝛆Z

Question:2x+22x+1+1=y2solvethisequationifx,yϵZ

Commented by prakash jain last updated on 18/Oct/20

2^x +2^(2x+1) +1=y^2   x=0,y=±2 is obvious solution  x>0 LHS is odd  x=1 has no solution.  x≥2  y=2k+1  2^x +2^(2x+1) =4k^2 +4k  k(k+1)=2^(2x−1) +2^(x−2) =2^(x−2) (2^(x+1) +1)  will continue

2x+22x+1+1=y2x=0,y=±2isobvioussolutionx>0LHSisoddx=1hasnosolution.x2y=2k+12x+22x+1=4k2+4kk(k+1)=22x1+2x2=2x2(2x+1+1)willcontinue

Commented by 2004 last updated on 18/Oct/20

Can you continue sir(I could come to this step)

Canyoucontinuesir(Icouldcometothisstep)

Commented by 2004 last updated on 18/Oct/20

Thanks

Thanks

Answered by floor(10²Eta[1]) last updated on 18/Oct/20

if x<0⇒x≤−1  ⇒2^x ≤(1/2), 2^(2x+1) ≤(1/2)  1<1+2^x +2^(2x+1) ≤1+(1/2)+(1/2)=2  ⇒1<y^2 ≤2⇒no solution for x<0.  if x=0:  ⇒1+2^x +2^(2x+1) =4=y^2 ⇒y=±2  (x, y)={(0, −2), (0, 2)}  if x=1:  ⇒1+2+2^3 =11=y^2 ⇒no sol.  x=2:  1+2^2 +2^5 =37=y^2 ⇒no sol.  Suppose x≥3:  1+2^x +2^(2x+1) =y^2   2^x +2^(2x+1) =y^2 −1=(y+1)(y+1)  2^x (1+2^(x+1) )=(y+1)(y−1)  LHS is even⇒RHS is also even but  y+1 and y−1 have the same parity  ⇒y+1 and y−1 are even  ⇒gcd(y+1,y−1)∣2  ⇒gcd(y+1,y−1)=2  ⇒y+1 or y−1 is divisible by 2 but not a   larger power of 2 like 4  (y+1)(y−1)=2.2^(x−1) (1+2^(x+1) )  so y+1 or y−1 is a multiple of 2^(x−1)   Case 1: y+1=2^(x−1) .m (m≥1, odd)  (If m was even then that would imply  that y−1 was odd because y+1 would take  all of the even part of the RHS, but   we know that they are both even.   And m≥1 because if (x,y) is a sol. so is  (x, −y), so we only need to look for y≥0)  ⇒y=2^(x−1) .m−1  1+2^x +2^(2x+1) =(2^(x−1) .m−1)^2 =2^(2x−2) .m^2 −2^x .m+1  ⇒1+2^(x+1) =2^(x−2) .m^2 −m  m+1=2^(x−2) .m^2 −2^(x+1) =2^(x−2) (m^2 −8)  m+1=2^(x−2) (m^2 −8)≥2(m^2 −8)  2m^2 −m−17≤0  ((1−(√(137)))/2)≤m≤((1+(√(137)))/2)  but since m≥1:  1≤m≤((1+(√(137)))/4)<4⇒m=1 or m=3  m=1⇒2=2^(x−2) (−7) (no sol.)  m=3⇒4=2^(x−2) ⇒x=4  1+2^4 +2^9 =y^2 ⇒y=±23  Case 2: y−1=2^(x−1) .m (m≥1, odd)  y=2^(x−1) .m+1  1+2^x +2^(2x+1) =(2^(x−1) .m+1)^2 =2^(2x−2) .m^2 +2^x .m+1  1+2^(x+1) =2^(x−2) .m^2 +m  1−m=2^(x−2) .m^2 −2^(x+1) =2^(x−2) (m^2 −8)  0≥1−m=2^(x−1) (m^2 −8)  ⇒m^2 −8≤0⇒m=1 (doesn′t work)  all the solutions are:  (x, y)=(0, −2), (0, 2), (4, −23), (4, 23)

ifx<0x12x12,22x+1121<1+2x+22x+11+12+12=21<y22nosolutionforx<0.ifx=0:1+2x+22x+1=4=y2y=±2(x,y)={(0,2),(0,2)}ifx=1:1+2+23=11=y2nosol.x=2:1+22+25=37=y2nosol.Supposex3:1+2x+22x+1=y22x+22x+1=y21=(y+1)(y+1)2x(1+2x+1)=(y+1)(y1)LHSisevenRHSisalsoevenbuty+1andy1havethesameparityy+1andy1areevengcd(y+1,y1)2gcd(y+1,y1)=2y+1ory1isdivisibleby2butnotalargerpowerof2like4(y+1)(y1)=2.2x1(1+2x+1)soy+1ory1isamultipleof2x1Case1:y+1=2x1.m(m1,odd)(Ifmwaseventhenthatwouldimplythaty1wasoddbecausey+1wouldtakealloftheevenpartoftheRHS,butweknowthattheyarebotheven.Andm1becauseif(x,y)isasol.sois(x,y),soweonlyneedtolookfory0)y=2x1.m11+2x+22x+1=(2x1.m1)2=22x2.m22x.m+11+2x+1=2x2.m2mm+1=2x2.m22x+1=2x2(m28)m+1=2x2(m28)2(m28)2m2m17011372m1+1372butsincem1:1m1+1374<4m=1orm=3m=12=2x2(7)(nosol.)m=34=2x2x=41+24+29=y2y=±23Case2:y1=2x1.m(m1,odd)y=2x1.m+11+2x+22x+1=(2x1.m+1)2=22x2.m2+2x.m+11+2x+1=2x2.m2+m1m=2x2.m22x+1=2x2(m28)01m=2x1(m28)m280m=1(doesntwork)allthesolutionsare:(x,y)=(0,2),(0,2),(4,23),(4,23)

Commented by 1549442205PVT last updated on 18/Oct/20

If so such then 1+2^x =2^(x−3) .m^2 −m  your argument later still true.You  can go by path base on system   { ((2^(x−1) .m=y+1)),((((2.(2^(x+1) +1))/m)=y−1)) :}  Thank you

Ifsosuchthen1+2x=2x3.m2myourargumentlaterstilltrue.Youcangobypathbaseonsystem{2x1.m=y+12.(2x+1+1)m=y1Thankyou

Answered by TANMAY PANACEA last updated on 18/Oct/20

by inspection  x=0   y=2

byinspectionx=0y=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com