Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 20044 by mondodotto@gmail.com last updated on 20/Aug/17

Answered by $@ty@m last updated on 20/Aug/17

=(1/2)∫2sin4xcos2xdx  =(1/2)∫(sin6x+sin2x)dx  =(1/2)∫sin6xdx+(1/2)∫sin2xdx  =((−cos6x)/(12))−((cos2x)/4)+C

=122sin4xcos2xdx=12(sin6x+sin2x)dx=12sin6xdx+12sin2xdx=cos6x12cos2x4+C

Answered by mrW1 last updated on 21/Aug/17

∫sin 4x cos 2x dx  =∫2sin 2x cos 2x cos 2x dx  =∫sin 2x cos^2  2x d2x  =−∫cos^2  2x dcos 2x  =−((cos^3  2x)/3)+C

sin4xcos2xdx=2sin2xcos2xcos2xdx=sin2xcos22xd2x=cos22xdcos2x=cos32x3+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com