All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 200586 by Calculusboy last updated on 20/Nov/23
Answered by Frix last updated on 21/Nov/23
∫π0x2+tan2xdx=∫π0xdx−∫π0x1+cos2xI1=∫π0xdx=π22I2=∫π0x1+cos2xdx=t=2x12∫2π0t3+costdt=u=2π−t=12∫02πu−2π3+cosudu=12∫2π02π−u3+cosudu⇒[Renamingvariables]I2=12(12∫2π0v3+cosvdv+12∫2π02π−v3+cosvdv)==π2∫2π0dv3+cosv=π∫π0dv3+cosv=w=tanv2=π∫∞0dww2+2=π2[tan−1w2]0∞=2π24⇒∫π0x2+tan2xdx=I1−I2=(2−2)π24
Commented by Calculusboy last updated on 21/Nov/23
thankssir
Commented by Frix last updated on 21/Nov/23
��
Terms of Service
Privacy Policy
Contact: info@tinkutara.com