Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200586 by Calculusboy last updated on 20/Nov/23

Answered by Frix last updated on 21/Nov/23

∫_0 ^π (x/(2+tan^2  x))dx=∫_0 ^π xdx−∫_0 ^π (x/(1+cos^2  x))  I_1 =∫_0 ^π xdx=(π^2 /2)  I_2 =∫_0 ^π (x/(1+cos^2  x))dx =^(t=2x)  (1/2)∫_0 ^(2π) (t/(3+cos t))dt =^(u=2π−t)   =(1/2)∫_(2π) ^0 ((u−2π)/(3+cos u))du=(1/2)∫_0 ^(2π) ((2π−u)/(3+cos u))du  ⇒  [Renaming variables]  I_2 =(1/2)((1/2)∫_0 ^(2π) (v/(3+cos v))dv+(1/2)∫_0 ^(2π) ((2π−v)/(3+cos v))dv)=  =(π/2)∫_0 ^(2π) (dv/(3+cos v))=π∫_0 ^π (dv/(3+cos v)) =^(w=tan (v/2))    =π∫_0 ^∞ (dw/(w^2 +2))=(π/( (√2)))[tan^(−1)  (w/( (√2)))]_0 ^∞ =(((√2)π^2 )/4)  ⇒  ∫_0 ^π (x/(2+tan^2  x))dx=I_1 −I_2 =(((2−(√2))π^2 )/4)

π0x2+tan2xdx=π0xdxπ0x1+cos2xI1=π0xdx=π22I2=π0x1+cos2xdx=t=2x122π0t3+costdt=u=2πt=1202πu2π3+cosudu=122π02πu3+cosudu[Renamingvariables]I2=12(122π0v3+cosvdv+122π02πv3+cosvdv)==π22π0dv3+cosv=ππ0dv3+cosv=w=tanv2=π0dww2+2=π2[tan1w2]0=2π24π0x2+tan2xdx=I1I2=(22)π24

Commented by Calculusboy last updated on 21/Nov/23

thanks sir

thankssir

Commented by Frix last updated on 21/Nov/23

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com