Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 201037 by mr W last updated on 28/Nov/23

Commented by mr W last updated on 28/Nov/23

a triangle has sides a, b, c. find the  fraction of its area covered by all  (infinite) inscribed circles as shown.

atrianglehassidesa,b,c.findthefractionofitsareacoveredbyall(infinite)inscribedcirclesasshown.

Answered by mr W last updated on 29/Nov/23

Commented by mr W last updated on 29/Nov/23

((r_n −r_(n+1) )/(r_n +r_(n+1) ))=sin (θ/2)=λ  ⇒(r_(n+1) /r_n )=((1−λ)/(1+λ))=constant ⇒ G.P.

rnrn+1rn+rn+1=sinθ2=λrn+1rn=1λ1+λ=constantG.P.

Commented by mr W last updated on 29/Nov/23

Commented by mr W last updated on 29/Nov/23

let λ_A =sin (A/2)  (r_(A,n+1) /r_(A,n) )=...=(r_(A,1) /r_0 )=((1−λ_A )/(1+λ_A ))=k_A   area of all incribed circles:  A_(IC) =π(Σ_(n=0) ^∞ r_(A,n) ^2 +Σ_(n=0) ^∞ r_(B,n) ^2 +Σ_(n=0) ^∞ r_(C,n) ^2 )−2πr_0 ^2     =πr_0 ^2 ((1/(1−k_A ^2 ))+(1/(1−k_B ^2 ))+(1/(1−k_C ^2 ))−2)    =πr_0 ^2 [(1/(1−(((1−sin (A/2))/(1+sin (A/2))))^2 ))+(1/(1−(((1−sin (B/2))/(1+sin (B/2))))^2 ))+(1/(1−(((1−sin (C/2))/(1+sin (C/2))))^2 ))−2]    =((4πΔ^2 )/((a+b+c)^2 ))[(1/(1−(((1−sin (A/2))/(1+sin (A/2))))^2 ))+(1/(1−(((1−sin (B/2))/(1+sin (B/2))))^2 ))+(1/(1−(((1−sin (C/2))/(1+sin (C/2))))^2 ))−2]  (A_(IC) /Δ)=((4πΔ)/((a+b+c)^2 ))[(1/(1−(((1−sin (A/2))/(1+sin (A/2))))^2 ))+(1/(1−(((1−sin (B/2))/(1+sin (B/2))))^2 ))+(1/(1−(((1−sin (C/2))/(1+sin (C/2))))^2 ))−2]   =((8π sin A sin B sin C)/((sin A+sin B+sin C)^2 ))[(1/(1−(((1−sin (A/2))/(1+sin (A/2))))^2 ))+(1/(1−(((1−sin (B/2))/(1+sin (B/2))))^2 ))+(1/(1−(((1−sin (C/2))/(1+sin (C/2))))^2 ))−2]

letλA=sinA2rA,n+1rA,n=...=rA,1r0=1λA1+λA=kAareaofallincribedcircles:AIC=π(n=0rA,n2+n=0rB,n2+n=0rC,n2)2πr02=πr02(11kA2+11kB2+11kC22)=πr02[11(1sinA21+sinA2)2+11(1sinB21+sinB2)2+11(1sinC21+sinC2)22]=4πΔ2(a+b+c)2[11(1sinA21+sinA2)2+11(1sinB21+sinB2)2+11(1sinC21+sinC2)22]AICΔ=4πΔ(a+b+c)2[11(1sinA21+sinA2)2+11(1sinB21+sinB2)2+11(1sinC21+sinC2)22]=8πsinAsinBsinC(sinA+sinB+sinC)2[11(1sinA21+sinA2)2+11(1sinB21+sinB2)2+11(1sinC21+sinC2)22]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com