All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201291 by sonukgindia last updated on 03/Dec/23
Answered by aleks041103 last updated on 03/Dec/23
I=∫01ln(1+x)dx1+x2noticex=1−t1+t,dx=−2dt(1+t2)1+x=1−t1+t+1=21+t1+x2=1+1+t2−2t1+t2+2t=2+2t21+t2+2t=2(1+t2)(1+t)2⇒I=∫10ln(2)−ln(1+t)2(1+t2)(1+t)2(−2dt(1+t)2)==∫01ln(2)−ln(1+t)1+t2dt=ln(2)∫01dt1+t2−I⇒2I=ln(2)∫01dt1+t2=ln(2)arctan(1)⇒I=πln(2)8
Answered by Calculusboy last updated on 04/Dec/23
Solution:∫01In(x+1)1+x2dxletx=tanθdx=sec2θdθwhenx=1θ=π4andwhenx=0θ=0I=∫0π4In(tanθ+1)1+tan2θsec2θdθNb:1+tan2θ=sec2θI=∫0π4In(1+tanθ)sec2θsec2θdθ⇔I=∫0π4In(1+tanθ)dθlety=π4−θdy=−dθwhenθ=π4y=0andwhenθ=0y=π4I=∫π40In[1+tan(π4−y)](−dy)changingofvariableI=∫0π4In[1+tan(π4−θ)]dθ⇔I=∫0π4In[1+tan(π4)−tanθ1+tan(π4)tanθ]dθI=∫0π4In[1+1−tanθ1+tanθ]dθ⇔I=∫0π4In[1+tanθ+1−tanθ1+tanθ]dθ⇔I=∫0π4In[21+tanθ]dθI=∫0π4[In2−In(1+tanθ)]dθ⇔I=In(2)∫0π4dθ−∫0π4In(1+tanθ)dθI=In(2)[x]0π4−I2I=In(2)[π4−0]2I=π4In(2)I=π8In(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com