Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201291 by sonukgindia last updated on 03/Dec/23

Answered by aleks041103 last updated on 03/Dec/23

I=∫_0 ^( 1) ((ln(1+x)dx)/(1+x^2 ))  notice  x=((1−t)/(1+t)), dx=−((2dt)/((1+t^2 )))  1+x=((1−t)/(1+t))+1=(2/(1+t))  1+x^2 =1+((1+t^2 −2t)/(1+t^2 +2t))=((2+2t^2 )/(1+t^2 +2t))=((2(1+t^2 ))/((1+t)^2 ))  ⇒I=∫_1 ^( 0) ((ln(2)−ln(1+t))/((2(1+t^2 ))/((1+t)^2 )))(−((2dt)/((1+t)^2 )))=  =∫_0 ^( 1) ((ln(2)−ln(1+t))/(1+t^2 ))dt=ln(2)∫_0 ^1 (dt/(1+t^2 ))−I  ⇒2I=ln(2)∫_0 ^( 1) (dt/(1+t^2 ))=ln(2)arctan(1)  ⇒I=((πln(2))/8)

I=01ln(1+x)dx1+x2noticex=1t1+t,dx=2dt(1+t2)1+x=1t1+t+1=21+t1+x2=1+1+t22t1+t2+2t=2+2t21+t2+2t=2(1+t2)(1+t)2I=10ln(2)ln(1+t)2(1+t2)(1+t)2(2dt(1+t)2)==01ln(2)ln(1+t)1+t2dt=ln(2)01dt1+t2I2I=ln(2)01dt1+t2=ln(2)arctan(1)I=πln(2)8

Answered by Calculusboy last updated on 04/Dec/23

Solution: ∫_0 ^1  ((In(x+1))/(1+x^2 ))dx      let x=tan𝛉   dx=sec^2 𝛉d𝛉  when x=1  𝛉=(𝛑/4)  and when x=0  𝛉=0  I=∫_0 ^(𝛑/4) ((In(tan𝛉+1))/(1+tan^2 𝛉))sec^2 𝛉d𝛉   Nb:  1+tan^2 𝛉=sec^2 𝛉  I=∫_0 ^(𝛑/4)  ((In(1+tan𝛉))/(sec^2 𝛉))sec^2 𝛉d𝛉   ⇔   I=∫_0 ^(𝛑/4) In(1+tan𝛉)d𝛉  let y=(𝛑/4)−𝛉     dy=−d𝛉  when 𝛉=(𝛑/4)  y=0   and when 𝛉=0   y=(𝛑/4)  I=∫_(𝛑/4) ^0 In [1+tan((𝛑/4)−y)](−dy)  changing of variable  I=∫_0 ^(𝛑/4)  In[1+tan((𝛑/4)−𝛉)]d𝛉   ⇔   I=∫_0 ^(𝛑/4)  In[1+((tan((𝛑/4))−tan𝛉)/(1+tan((𝛑/4))tan𝛉))]d𝛉  I=∫_0 ^(𝛑/4) In[1+((1−tan𝛉)/(1+tan𝛉))]d𝛉   ⇔   I=∫_0 ^(𝛑/4) In[((1+tan𝛉+1−tan𝛉)/(1+tan𝛉))]d𝛉     ⇔   I=∫_0 ^(𝛑/4) In[(2/(1+tan𝛉))]d𝛉  I=∫_0 ^(𝛑/4)  [In2−In(1+tan𝛉)]d𝛉   ⇔  I=In(2)∫_0 ^(𝛑/4) d𝛉−∫_0 ^(𝛑/4) In(1+tan𝛉)d𝛉  I=In(2)[x]_0 ^(𝛑/4) −I  2I=In(2)[(𝛑/4)−0]  2I=(𝛑/4)In(2)  I=(𝛑/8)In(2)

Solution:01In(x+1)1+x2dxletx=tanθdx=sec2θdθwhenx=1θ=π4andwhenx=0θ=0I=0π4In(tanθ+1)1+tan2θsec2θdθNb:1+tan2θ=sec2θI=0π4In(1+tanθ)sec2θsec2θdθI=0π4In(1+tanθ)dθlety=π4θdy=dθwhenθ=π4y=0andwhenθ=0y=π4I=π40In[1+tan(π4y)](dy)changingofvariableI=0π4In[1+tan(π4θ)]dθI=0π4In[1+tan(π4)tanθ1+tan(π4)tanθ]dθI=0π4In[1+1tanθ1+tanθ]dθI=0π4In[1+tanθ+1tanθ1+tanθ]dθI=0π4In[21+tanθ]dθI=0π4[In2In(1+tanθ)]dθI=In(2)0π4dθ0π4In(1+tanθ)dθI=In(2)[x]0π4I2I=In(2)[π40]2I=π4In(2)I=π8In(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com