All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201293 by sonukgindia last updated on 03/Dec/23
Answered by aleks041103 last updated on 03/Dec/23
I=∫2∞8arcsec(x/2)dxx3−4x==∫1∞8arcsec((2x)/2)(2x)3−4(2x)d(2x)=2∫1∞arcsec(x)x(x2−1)dxx=sec(t)⇒dx=sec(t)tan(t)dt∫0π/2tsec(t)tan(t)dtsec(t)(sec2(t)−1)==∫0π/2tcos(t)sin(t)dt=∫0π/2td(ln(sin(t)))==[tln(sin(t))]0π/2−∫0π/2ln(sin(t))dt=−∫0π/2ln(sin(t))dtJ=∫0π/2ln(sin(t))dt=∫π/20ln(sin(π2−s))d(π2−s)==∫0π/2ln(cos(s))ds⇒2J=J+J=∫0π/2(ln(sin(x))+ln(cos(x)))dx==∫0π/2ln(sin(x)cos(x))dx==∫0π/2ln(sin(2x)2)dx==∫0π/2ln(sin(2x))dx−π2ln(2)==12∫0πln(sin(x))dx−πln(2)2==12∫−π/2π/2ln(cos(x))dx−πln(2)2==∫0π/2ln(cos(x))dx−πln(2)2=J−πln(2)2⇒J=−πln(2)2⇒I=−2J⇒∫2∞8arcsec(x/2)x3−4xdx=πln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com