All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 201343 by gabi last updated on 05/Dec/23
Answered by aleks041103 last updated on 05/Dec/23
A3+A2+A=0λiseigenvalue⇒λ3+λ2+λ=λ(λ2+λ+1)=0⇒λ=0,w,w∗wherew=e2πi/3andw∗isthecomplexconjugateofw.letA=PLP−1,whereListheJordannormalformofA.⇒P(L3+L2+L)P−1=0⇒L3+L2+L=0whereLisblock−diagonalwithJordanblocksi.e.L=diag(J11,..,J1a,J21,...,J2b,J31,...,J3c)whereJksisaJordanblockwithk−theigenvalue⇒Jks3+Jks2+Jks=0Jks=λkEs+SswhereEsistheidentityoverthes×ssquarematricesandSsisthes×ssquarematrixwith0severywhere,exceptonthetopoff−diagonal.ex.:J14=[λ11000λ11000λ11000λ1]J14=λ1[1000010000100001]+[0100001000010000]==λ1E4+S4ItisgoodtonotethatSsk=0,ifk⩾sand{Ssk}k=0s−1={Es}∪{Ssk}k=1s−1islin.indep.ThenJks3+Jks2+Jks=0⇒(λE+S)3+(λE+S)2+λE+S=0λ3E+3λ2S+3λS2+S3+λ2E+2λS+S2+λE+S=0⇒(λ3+λ2+λ)E+(3λ2+2λ+1)S+(3λ+1)S2+S3=0(E,S∈Ms×s)ifs>3:{E,S,S2,S3}⊆{Ssk}k=0s−1islin.ind.⇒{λ3+λ2+λ=03λ2+2λ+1=03λ+1=01=0whichisimposs.ifs=3:S3=0,{E,S,S2}arelin.indep.⇒{λ3+λ2+λ=03λ2+2λ+1=03λ+1=0whichisimposs.ifs=2:⇒S3=S2=0and{E,S}arelin.ind.⇒{λ3+λ2+λ=03λ2+2λ+1=01)⇒λ=0,w,w∗⇒λ2=−λ−1orλ=0replacein2)⇒−3(λ+1)+2λ+1=−λ−2⇒λ=−2but(−2)3+(−2)2+(−2)≠0or3(0)2+2(0)+1≠0⇒imposs.⇒s=1⇒thejordanblocksarenumbers⇒Aisdiagonalisable.⇒rg(A)=dim(ker(A−wE))+dim(ker(A−w∗E))Aisdiagon.⇒ker(A−wE)=span({v1,...,vk})where{v1,...,vk}arelin.ind.andAvm=wvm⇒(Avm)∗=A∗vm∗=Avm∗=(wvm)∗=w∗vm∗whereitisusedthatA∗=A,becauseA∈Mn×n(R).⇒{v1∗,...,vk∗}areeigenvectorscorrespondingtoeigenvaluew∗≠w.⇒span({v1∗,...,vk∗})⩽ker(A−w∗E)letu∈ker(A−w∗E)/span({v1∗,...,vk∗})andu≠0then,Au=w∗u⇒Au∗=wu∗⇒u∗∈span({v1,...,vk})⇒u∈span({v1∗,...,vk∗})⇒u∈[span({v1∗,...,vk∗})]∩[ker(A−w∗E)/span({v1∗,...,vk∗})]={0}⇒u=0⇒contradiction⇒ker(A−w∗E)=span({v1∗,...,vk∗})⇒rg(A)=dim(ker(A−wE))+dim(ker(A−w∗E))==dim(span({v1,...,vk}))+dim(span({v1∗,...,vk∗}))==k+k=2k⇒2∣rg(A)
Commented by aleks041103 last updated on 05/Dec/23
Wecould′vesolveditinaneveneasiermannerlettheminimalpolynomialofAbemA(x).(bydefmA(x)isthelowestorderpolynomialthathasthepropertymA(A)=0)sincef(A)=A3+A2+A=0,thenmA∣f.thespectrumoff(x)=0isx=0,w,w∗.⇒fhasasimplespectrum.sincemA∣f⇒mAhasasimplespectrumtoo.Thereisatheorem,whichweessentiallyprovedforthisspecificcase,thatstatesthatthematrixAisdiagonalizableifandonlyiftheminimalpolynomialofAhassimplespectrum.Thus,sincemAhassimplespectrumthenAisdiahlgonalisable.Fromhereonforwarditisthesame.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com