All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 201509 by Calculusboy last updated on 07/Dec/23
Answered by witcher3 last updated on 09/Dec/23
tackprincipaldefinitionofLog(z)=ln∣z∣+iarg(z)z∈]−π2,3π2[ln(ix+ln(cos(x))=ln∣x2+ln2(cos(x)∣+iarg(ln(cos(x)+ix)arg(ln(cos(x)+ix)∈[π2,π[arg(ln(cos(x)+ix)=tan−1(xln(cos(x))+πcos(ln(cos(x))+ix)=12ln(x2+ln2(cos(x))+i(tan−1(xln(cos(x))+π)⇒2ln(cos(x)+ix)=ln(x2+ln2(cos(x))+itan−1(xlncos(x))+2πprincipaldefinition⇒2ln(cos(x)+ix)=ln(x2+ln2(cos(x))+2itan−1(xln(cos(x))∣2ln(cos(x)+ix)∣2=ln2(x2+ln2(cos(x)))+4arctan2(xln(cos(x))easyfromhere
Commented by Calculusboy last updated on 10/Dec/23
thankssir
Commented by witcher3 last updated on 10/Dec/23
withePleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com