Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 201509 by Calculusboy last updated on 07/Dec/23

Answered by witcher3 last updated on 09/Dec/23

tack principal  definition of Log(z)=ln∣z∣+iarg(z)  z∈]−(π/2),((3π)/2)[   ln(ix+ln(cos(x))=ln∣(√(x^2 +ln^2 (cos(x)))∣+i arg(ln(cos(x)+ix)  arg(ln(cos(x)+ix)∈[(π/2),π[   arg(ln(cos(x)+ix)=tan^(−1) ((x/(ln(cos(x))))+π  cos(ln(cos(x))+ix)=(1/2)ln(x^2 +ln^2 (cos(x))+i(tan^(−1) ((x/(ln(cos(x))))+π)  ⇒2ln(cos(x)+ix)=ln(x^2 +ln^2 (cos(x))+itan^(−1) ((x/(lncos(x))))+2π  principal definition  ⇒2ln(cos(x)+ix)=ln(x^2 +ln^2 (cos(x))+2itan^(−1) ((x/(ln(cos(x))))  ∣2ln(cos(x)+ix)∣^2 =ln^2 (x^2 +ln^2 (cos(x)))+4arctan^2 ((x/(ln(cos(x))))  easy from here

tackprincipaldefinitionofLog(z)=lnz+iarg(z)z]π2,3π2[ln(ix+ln(cos(x))=lnx2+ln2(cos(x)+iarg(ln(cos(x)+ix)arg(ln(cos(x)+ix)[π2,π[arg(ln(cos(x)+ix)=tan1(xln(cos(x))+πcos(ln(cos(x))+ix)=12ln(x2+ln2(cos(x))+i(tan1(xln(cos(x))+π)2ln(cos(x)+ix)=ln(x2+ln2(cos(x))+itan1(xlncos(x))+2πprincipaldefinition2ln(cos(x)+ix)=ln(x2+ln2(cos(x))+2itan1(xln(cos(x))2ln(cos(x)+ix)2=ln2(x2+ln2(cos(x)))+4arctan2(xln(cos(x))easyfromhere

Commented by Calculusboy last updated on 10/Dec/23

thanks sir

thankssir

Commented by witcher3 last updated on 10/Dec/23

withe Pleasur

withePleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com