Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20230 by ajfour last updated on 24/Aug/17

Commented by ajfour last updated on 27/Aug/17

Find the area of that part of the  surface of the sphere :  x^2 +y^2 +z^2 =a^2  which is cut out by  the surface of the cylinder :  (x^2 /a^2 )+(y^2 /b^2 )=1  (a>b).

Findtheareaofthatpartofthesurfaceofthesphere:x2+y2+z2=a2whichiscutoutbythesurfaceofthecylinder:x2a2+y2b2=1(a>b).

Commented by ajfour last updated on 26/Aug/17

I couldn′t solve this, method is  clear to me, but the integral i  cannot simplify. mrW1 Sir,  please help after i attach a   diagram  for its solution.

Icouldntsolvethis,methodiscleartome,buttheintegralicannotsimplify.mrW1Sir,pleasehelpafteriattachadiagramforitssolution.

Commented by ajfour last updated on 26/Aug/17

Commented by ajfour last updated on 26/Aug/17

Let Area of sphere outside  cylinder be A.  A=2∫_(−θ_0 ) ^(  θ_0 ) r(2φ)adθ  where acos θ_0 =b     r^2 =x^2 +y^2  such that   (x^2 /a^2 )+(y^2 /b^2 )=1   and also r=acos θ  and    tan φ=(x/y) .  Please help evaluating the integral..

LetAreaofsphereoutsidecylinderbeA.A=2θ0θ0r(2ϕ)adθwhereacosθ0=br2=x2+y2suchthatx2a2+y2b2=1andalsor=acosθandtanϕ=xy.Pleasehelpevaluatingtheintegral..

Commented by ajfour last updated on 26/Aug/17

x=ytan φ  x^2 +y^2 =y^2 (1+tan^2 φ)=r^2      ...(i(  ((y^2 tan^2 φ)/a^2 )+(y^2 /b^2 )=1  y^2 (((tan^2 φ)/a^2 )+(1/b^2 ))=1      ....(ii)  dividing (i) by (ii):  ((1+tan^2 φ)/(((tan^2 φ)/a^2 )+(1/b^2 )))=r^2  ⇒ tan^2 φ=((((r^2 /b^2 )−1))/((1−(r^2 /a^2 ))))  1+tan^2 φ=((r^2 ((1/b^2 )−(1/a^2 )))/((1−(r^2 /a^2 ))))  as r=acos θ  sec^2 φ=((cos^2 θ(a^2 −b^2 ))/(b^2 sin^2 θ))  ⇒  cos φ=((btan θ)/(√(a^2 −b^2 )))   ⇒  φ=cos^(−1) (((btan θ)/(√(a^2 −b^2 ))))  A=8a∫_0 ^(  θ_0 ) r𝛗d𝛉 =8a(I)    I=∫_0 ^(  θ_0 ) acos θcos^(−1) (((btan θ)/(√(a^2 −b^2 ))))dθ   =asin θcos^(−1) (((btan θ)/(√(a^2 −b^2 ))))∣_0 ^θ_0                −((−b)/(√(a^2 −b^2 )))∫_0 ^( θ_0 ) (((asin θsec^2 θ)dθ)/(√(1−((b^2 tan^2 θ)/((a^2 −b^2 ))))))   and as acos θ_0 =b      tan θ_0 =((√(a^2 −b^2 ))/b) , so  I=0+ab∫_0 ^( θ_0 ) ((sec θtan θdθ)/(√(a^2 −b^2 −b^2 tan^2 θ)))    =a∫_0 ^( θ_0 ) ((d(bsec θ))/(√(a^2 −b^2 sec^2 θ)))    =asin^(−1) (((bsec θ)/a))∣_0 ^θ_0      =a[sin^(−1) ((b/(acos θ_0 )))−sin^(−1) ((b/a))]  but acos θ_0 =b, so  I=a[(π/2)−sin^(−1) (b/a)]  and      A=8a^2 [(π/2)−sin^(−1) (b/a)]        A=4𝛑a^2 −8a^2 sin^(−1) ((b/a)).  (still answer dont match)   Help !

x=ytanϕx2+y2=y2(1+tan2ϕ)=r2...(i(y2tan2ϕa2+y2b2=1y2(tan2ϕa2+1b2)=1....(ii)dividing(i)by(ii):1+tan2ϕtan2ϕa2+1b2=r2tan2ϕ=(r2b21)(1r2a2)1+tan2ϕ=r2(1b21a2)(1r2a2)asr=acosθsec2ϕ=cos2θ(a2b2)b2sin2θcosϕ=btanθa2b2ϕ=cos1(btanθa2b2)A=8a0θ0rϕdθ=8a(I)I=0θ0acosθcos1(btanθa2b2)dθ=asinθcos1(btanθa2b2)0θ0ba2b20θ0(asinθsec2θ)dθ1b2tan2θ(a2b2)andasacosθ0=btanθ0=a2b2b,soI=0+ab0θ0secθtanθdθa2b2b2tan2θ=a0θ0d(bsecθ)a2b2sec2θ=asin1(bsecθa)0θ0=a[sin1(bacosθ0)sin1(ba)]butacosθ0=b,soI=a[π2sin1ba]andA=8a2[π2sin1ba]A=4πa28a2sin1(ba).(stillanswerdontmatch)Help!

Answered by ajfour last updated on 25/Aug/17

Area=4πa^2 −8a^2 sin^(−1) (((√(a^2 −b^2 ))/a)) .

Area=4πa28a2sin1(a2b2a).

Commented by ajfour last updated on 26/Aug/17

This is tbe answer in book.  if b→a then Area should tend  to zero. This is fulfilled by my  answer.  if b→0 Area should tend to 4πr^2 ,  again this is fulfilled by my  answer ..

Thisistbeanswerinbook.ifbathenAreashouldtendtozero.Thisisfulfilledbymyanswer.ifb0Areashouldtendto4πr2,againthisisfulfilledbymyanswer..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com