Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 202925 by mr W last updated on 05/Jan/24

Commented by mr W last updated on 05/Jan/24

[Q201146 reposted]  find IJ=?

[Q201146reposted]findIJ=?

Commented by MathematicalUser2357 last updated on 09/Jan/24

q num 201146

qnum201146

Answered by mr W last updated on 06/Jan/24

p=((a+b+c)/2) (semi−perimeter)  r=radius of incircle  R=radius of circumcircle  S=area of ΔABC     =pr=((abc)/(4R))=(√(p(p−a)(p−b)(p−c)))    AE=AF=p−a  BD=BF=p−b  CD=CE=p−c    AI^2 =(p−a)^2 +r^2     in ΔABC:  aAD^2 =(p−b)b^2 +(p−c)c^2 −a(p−b)(p−c)  AD^2 =(((p−b)b^2 +(p−c)c^2 )/a)−(p−b)(p−c)  AD^2 =(((p−a)a^2 +(p−b)b^2 +(p−c)c^2 −abc)/a)+(p−a)^2   AD^2 =((p(a^2 +b^2 +c^2 )−(a^3 +b^3 +c^3 )−abc)/a)+(p−a)^2   AD^2 =((p(2p^2 −2r^2 −8Rr)−(2p^3 −6r^2 p−12Rrp)−abc)/a)+(p−a)^2   AD^2 =((4r^2 p+4Rrp−abc)/a)+(p−a)^2   AD^2 =((4pr^2 +4RS−4RS)/a)+(p−a)^2   AD^2 =((4pr^2 )/a)+(p−a)^2   ⇒AD=(√(((4pr^2 )/a)+(p−a)^2 ))    ((AJ)/(JD))×((BD)/(BC))×((CE)/(EA))=1  ((AJ)/(JD))×((p−b)/a)×((p−c)/(p−a))=1  ⇒((AJ)/(JD))=((a(p−a))/((p−b)(p−c)))  ⇒AJ=((a(p−a))/(a(p−a)+(p−b)(p−c)))×AD      =((4a(p−a))/(2(ab+bc+ca)−(a^2 +b^2 +c^2 )))×AD      =((4a(p−a))/(2(p^2 +r^2 +4Rr)−(2p^2 −2r^2 −8Rr)))×AD      =((a(p−a))/(r^2 +4Rr))×AD  ⇒JD=(((p−b)(p−c))/(a(p−a)+(p−b)(p−c)))×AD      =(((p−b)(p−c))/(r^2 +4Rr))×AD    in ΔIAD:  AD×IJ^2 =AJ×DI^2 +JD×AI^2 −AD×AJ×JD  IJ^2 =((AJ)/(AD))×DI^2 +((JD)/(AD))×AI^2 −AJ×JD  IJ^2 =((a(p−a))/(r^2 +4Rr))×r^2 +(((p−b)(p−c))/(r^2 +4Rr))×[r^2 +(p−a)^2 ]−((a(p−a))/(r^2 +4Rr))×(((p−b)(p−c))/(r^2 +4Rr))×AD^2   IJ^2 =((a(p−a)+(p−b)(p−c))/(r^2 +4Rr))×r^2 +(((p−a)^2 (p−b)(p−c))/(r^2 +4Rr))−((a(p−a)(p−b)(p−c))/((r^2 +4Rr)^2 ))×AD^2   IJ^2 =((r^2 +4Rr)/(r^2 +4Rr))×r^2 +(((p−a)S^2 )/((r^2 +4Rr)p))−((aS^2 )/((r^2 +4Rr)^2 p))×AD^2   IJ^2 =r^2 +((pr^2 )/((r^2 +4Rr)^2 ))[(p−a)(r^2 +4Rr)−a×AD^2 ]  IJ^2 =r^2 +(p/((r+4R)^2 ))[(p−a)(r^2 +4Rr)−4pr^2 −a(p−a)^2 ]  IJ^2 =r^2 +(p/((r+4R)^2 ))[(p−a)(r^2 +4Rr−ap+a^2 )−4pr^2 ]  IJ^2 =r^2 +(p/((r+4R)^2 ))[(p−a)(bc−(p−a)p)−4pr^2 ]  IJ^2 =r^2 +(p^2 /(4(r+4R)^2 ))[2(ab+bc+ca)−(a^2 +b^2 +c^2 )−16Rr−16r^2 ]  IJ^2 =r^2 +(p^2 /(4(r+4R)^2 ))[2p^2 +2r^2 +8Rr−2p^2 +2r^2 +8Rr−16Rr−16r^2 ]  IJ^2 =r^2 −((3p^2 r^2 )/((r+4R)^2 ))  ⇒IJ=r(√(1−((3p^2 )/((r+4R)^2 ))))

p=a+b+c2(semiperimeter)r=radiusofincircleR=radiusofcircumcircleS=areaofΔABC=pr=abc4R=p(pa)(pb)(pc)AE=AF=paBD=BF=pbCD=CE=pcAI2=(pa)2+r2inΔABC:aAD2=(pb)b2+(pc)c2a(pb)(pc)AD2=(pb)b2+(pc)c2a(pb)(pc)AD2=(pa)a2+(pb)b2+(pc)c2abca+(pa)2AD2=p(a2+b2+c2)(a3+b3+c3)abca+(pa)2AD2=p(2p22r28Rr)(2p36r2p12Rrp)abca+(pa)2AD2=4r2p+4Rrpabca+(pa)2AD2=4pr2+4RS4RSa+(pa)2AD2=4pr2a+(pa)2AD=4pr2a+(pa)2AJJD×BDBC×CEEA=1AJJD×pba×pcpa=1AJJD=a(pa)(pb)(pc)AJ=a(pa)a(pa)+(pb)(pc)×AD=4a(pa)2(ab+bc+ca)(a2+b2+c2)×AD=4a(pa)2(p2+r2+4Rr)(2p22r28Rr)×AD=a(pa)r2+4Rr×ADJD=(pb)(pc)a(pa)+(pb)(pc)×AD=(pb)(pc)r2+4Rr×ADinΔIAD:AD×IJ2=AJ×DI2+JD×AI2AD×AJ×JDIJ2=AJAD×DI2+JDAD×AI2AJ×JDIJ2=a(pa)r2+4Rr×r2+(pb)(pc)r2+4Rr×[r2+(pa)2]a(pa)r2+4Rr×(pb)(pc)r2+4Rr×AD2IJ2=a(pa)+(pb)(pc)r2+4Rr×r2+(pa)2(pb)(pc)r2+4Rra(pa)(pb)(pc)(r2+4Rr)2×AD2IJ2=r2+4Rrr2+4Rr×r2+(pa)S2(r2+4Rr)paS2(r2+4Rr)2p×AD2IJ2=r2+pr2(r2+4Rr)2[(pa)(r2+4Rr)a×AD2]IJ2=r2+p(r+4R)2[(pa)(r2+4Rr)4pr2a(pa)2]IJ2=r2+p(r+4R)2[(pa)(r2+4Rrap+a2)4pr2]IJ2=r2+p(r+4R)2[(pa)(bc(pa)p)4pr2]IJ2=r2+p24(r+4R)2[2(ab+bc+ca)(a2+b2+c2)16Rr16r2]IJ2=r2+p24(r+4R)2[2p2+2r2+8Rr2p2+2r2+8Rr16Rr16r2]IJ2=r23p2r2(r+4R)2IJ=r13p2(r+4R)2

Commented by mr W last updated on 06/Jan/24

yes, you did. i didn′t  expect that the  formula can be so compact.

yes,youdid.ididntexpectthattheformulacanbesocompact.

Commented by ajfour last updated on 06/Jan/24

I remember i had the hope n  intuition that something compact  n beautiful dhould result. Thanks!

Irememberihadthehopenintuitionthatsomethingcompactnbeautifuldhouldresult.Thanks!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com