Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 203480 by mr W last updated on 20/Jan/24

Commented by mr W last updated on 20/Jan/24

is it possible that the red lines divide  the square into 4 parts with given   areas? if yes, find the length of the  red lines.

isitpossiblethattheredlinesdividethesquareinto4partswithgivenareas?ifyes,findthelengthoftheredlines.

Commented by behi834171 last updated on 20/Jan/24

1)from the area of sqare:  s^2 =20+30+40+70=160⇒s=4(√(10))  2)from the area of trapeziuss,  p:is the vertical part of section with, 20 area  q:is the horizontal part of section with,20 area  ((20p+40p)/2).s=20+40  ((20q+30q)/2).s=20+30  ((30q+70q)/2).s=30+70  ((40p+70p)/2).s=40+70  [𝚺(rhs)].s=2×320⇒4s.s=640⇒s=4(√(10))  from 1&2, yes. it is possible.

1)fromtheareaofsqare:s2=20+30+40+70=160s=4102)fromtheareaoftrapeziuss,p:istheverticalpartofsectionwith,20areaq:isthehorizontalpartofsectionwith,20area20p+40p2.s=20+4020q+30q2.s=20+3030q+70q2.s=30+7040p+70p2.s=40+70[Σ(rhs)].s=2×3204s.s=640s=410from1&2,yes.itispossible.

Answered by esmaeil last updated on 20/Jan/24

a^2 =160→a=4(√(10))  (((m+n)/2))×4(√(10))=50(Area of the  top trapizoid)→  m+n=((5(√(10)))/2)  rsinα=n−m<m+n<((5(√(10)))/2)  α=(angle of red line with the   horizon)  r>a>4(√(10))  max(sinα)=1→rsinα≮((5(√(10)))/2)→  not possible

a2=160a=410(m+n2)×410=50(Areaofthetoptrapizoid)m+n=5102rsinα=nm<m+n<5102α=(angleofredlinewiththehorizon)r>a>410max(sinα)=1rsinα5102notpossible

Commented by mr W last updated on 21/Jan/24

what if one area is not 70 but 50?  20, 30, 40 remain.

whatifoneareaisnot70but50?20,30,40remain.

Commented by mr W last updated on 21/Jan/24

Commented by esmaeil last updated on 21/Jan/24

a^2 =140  (((m+n)/2))×2(√(35))=50→m+n=((10(√(35)))/7)→  n−m<((10(√(35)))/7)  sinα=((n−m)/r)→rsinα=n−m<((10(√(35)))/7)  ≈8.4515  but  r>(√(140))=a≈12  i think only for(α=0)→  m=n=(a/2) is possible

a2=140(m+n2)×235=50m+n=10357nm<10357sinα=nmrrsinα=nm<103578.4515butr>140=a12ithinkonlyfor(α=0)m=n=a2ispossible

Answered by mr W last updated on 21/Jan/24

Commented by mr W last updated on 21/Jan/24

side length of square =s  s^2 =20+30+40+70  ⇒s=(√(20+30+40+70))  xy−((x^2 tan θ)/2)+((y^2 tan θ)/2)=20  2xy−(x^2 −y^2 )tan θ=40   ...(i)  similarly  2y(s−x)−[y^2 −(s−x)^2 ]tan θ=60   ...(ii)  2x(s−y)−[(s−y)^2 −x^2 ]tan θ=80   ...(iii)  from (i):  tan θ=((2xy−40)/(x^2 −y^2 ))  put this into (ii) and (iii):  2y(s−x)−[y^2 −(s−x)^2 ](((2xy−40)/(x^2 −y^2 )))=60   ...(I)  2x(s−y)−[(s−y)^2 −x^2 ](((2xy−40)/(x^2 −y^2 )))=80   ...(II)  if the area of the fourth part is 70,  there is no solution for the equation  system. if the fourth part is 60, we  get a solution:  x≈4.3225, y≈5.0431, θ≈−28.06°

sidelengthofsquare=ss2=20+30+40+70s=20+30+40+70xyx2tanθ2+y2tanθ2=202xy(x2y2)tanθ=40...(i)similarly2y(sx)[y2(sx)2]tanθ=60...(ii)2x(sy)[(sy)2x2]tanθ=80...(iii)from(i):tanθ=2xy40x2y2putthisinto(ii)and(iii):2y(sx)[y2(sx)2](2xy40x2y2)=60...(I)2x(sy)[(sy)2x2](2xy40x2y2)=80...(II)iftheareaofthefourthpartis70,thereisnosolutionfortheequationsystem.ifthefourthpartis60,wegetasolution:x4.3225,y5.0431,θ28.06°

Commented by mr W last updated on 21/Jan/24

Answered by ajfour last updated on 21/Jan/24

Commented by ajfour last updated on 21/Jan/24

let  2s=a+b=c+d=(√(P+Q+R+S))  tan θ=2t  Q−a^2 t+c^2 t=ac  P−c^2 t+b^2 t=bc  S−b^2 t+d^2 t=bd  R−d^2 t+a^2 t=da

let2s=a+b=c+d=P+Q+R+Stanθ=2tQa2t+c2t=acPc2t+b2t=bcSb2t+d2t=bdRd2t+a2t=da

Terms of Service

Privacy Policy

Contact: info@tinkutara.com