Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 20488 by xing last updated on 27/Aug/17

Commented by ajfour last updated on 27/Aug/17

Question is:  Given   a=−(√(99))+(√(999))+(√(9999))                   b=(√(99))−(√(999))+(√(9999))                   c=(√(99))+(√(999))−(√(9999))  Find the value of   (a^4 /((a−b)(a−c)))+(b^4 /((b−c)(b−a)))+(c^4 /((c−a)(c−b)))

Questionis:Givena=99+999+9999b=99999+9999c=99+9999999Findthevalueofa4(ab)(ac)+b4(bc)(ba)+c4(ca)(cb)

Answered by ajfour last updated on 27/Aug/17

Let a=pc ,  b=qc ; then   (a^4 /((a−b)(a−c)))+(b^4 /((b−c)(b−a)))+(c^4 /((c−a)(c−b)))  =((p^4 c^4 )/(c^2 (p−q)(p−1)))+((q^4 c^4 )/(c^2 (q−1)(q−p)))                                      +(c^4 /(c^2 (1−p)(1−q)))  =(c^2 /((p−q)))[(p^4 /(p−1))−(q^4 /(q−1))+((p−q)/((1−p)(1−q)))]  =(c^2 /((p−q)))[((p^4 q−p^4 −pq^4 +q^4 +p−q)/((1−p)(1−q)))]  =(c^2 /((p−q)))[((pq(p^3 −q^3 )−(p^4 −q^4 )+(p−q))/((1−p)(1−q)))]  =c^2 [((pq(p^2 +q^2 +pq)−(p^2 +q^2 )(p+q)+1)/((1−p)(1−q)))]  =c^2 [(((p^2 +q^2 )(pq−p−q)+p^2 q^2 +1)/((1−p)(1−q)))]  =c^2 [(((p^2 +q^2 )(p−1)(q−1)−p^2 −q^2 +p^2 q^2 +1)/((1−p)(1−q)))]  =c^2 [(((p^2 +q^2 )(p−1)(q−1)+(p^2 −1)(q^2 −1))/((1−p)(1−q)))]  =c^2 [p^2 +q^2 +(p+1)(q+1)]  =c^2 [p^2 +q^2 +pq+p+q+1]  =a^2 +b^2 +ab+ca+bc+c^2   =(1/2)[(a+b)^2 +(b+c)^2 +(c+a)^2 ]  =(1/2)[4×9999+4×99+4×999]  =2[9999+999+99]  =18[1111+111+11]  =18×1233)=9×2466  =22194 .   ( option A)

Leta=pc,b=qc;thena4(ab)(ac)+b4(bc)(ba)+c4(ca)(cb)=p4c4c2(pq)(p1)+q4c4c2(q1)(qp)+c4c2(1p)(1q)=c2(pq)[p4p1q4q1+pq(1p)(1q)]=c2(pq)[p4qp4pq4+q4+pq(1p)(1q)]=c2(pq)[pq(p3q3)(p4q4)+(pq)(1p)(1q)]=c2[pq(p2+q2+pq)(p2+q2)(p+q)+1(1p)(1q)]=c2[(p2+q2)(pqpq)+p2q2+1(1p)(1q)]=c2[(p2+q2)(p1)(q1)p2q2+p2q2+1(1p)(1q)]=c2[(p2+q2)(p1)(q1)+(p21)(q21)(1p)(1q)]=c2[p2+q2+(p+1)(q+1)]=c2[p2+q2+pq+p+q+1]=a2+b2+ab+ca+bc+c2=12[(a+b)2+(b+c)2+(c+a)2]=12[4×9999+4×99+4×999]=2[9999+999+99]=18[1111+111+11]=18×1233)=9×2466=22194.(optionA)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com