Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 204944 by mr W last updated on 02/Mar/24

Commented by mr W last updated on 03/Mar/24

the distances from a point inside  a triangle to its vertexes are p, q, r  respectively. find the maximum  area of the triangle and its sides.

thedistancesfromapointinsideatriangletoitsvertexesarep,q,rrespectively.findthemaximumareaofthetriangleanditssides.

Answered by mr W last updated on 03/Mar/24

Commented by mr W last updated on 03/Mar/24

α+β+γ=2π  Δ=area of triangle  Δ=((qr sin α)/2)+((rp sin β)/2)+((pq sin γ)/2)  Δ=((pqr)/2)(((sin α)/p)+((sin β)/q)+((sin γ)/r))=((pqr)/2)Φ  with Φ=((sin α)/p)+((sin β)/q)+((sin γ)/r)  Δ_(max) ⇔Φ_(max)   F=((sin α)/p)+((sin β)/q)+((sin γ)/r)−λ(α+β+γ−2π)  (∂F/∂α)=((cos α)/p)−λ=0 ⇒cos α=pλ  similarly  cos β=qλ  cos γ=rλ    we see r cos β=q cos γ=qrλ, that   means AS⊥BC.   similarly BS⊥AC, CS⊥AB.  that means S is the orthocenter of  the triangle.    cos (α+β)=cos (2π−γ)=cos γ  pqλ^2 −(√((1−p^2 λ^2 )(1−q^2 λ^2 )))=rλ  pqλ^2 −rλ=(√((1−p^2 λ^2 )(1−q^2 λ^2 )))  p^2 q^2 λ^4 −2pqrλ^3 +r^2 λ^2 =(1−p^2 λ^2 )(1−q^2 λ^2 )  p^2 q^2 λ^4 −2pqrλ^3 +r^2 λ^2 =1−(p^2 +q^2 )λ^2 +p^2 q^2 λ^4   ⇒(1/λ^3 )−((p^2 +q^2 +r^2 )/λ)+2pqr=0  ⇒(1/λ)=−2(√((p^2 +q^2 +r^2 )/3)) sin [(π/3)+(1/3)sin^(−1) ((pqr)/((((p^2 +q^2 +r^2 )/3))^(3/2) ))]  ⇒λ=−(1/(2(√((p^2 +q^2 +r^2 )/3)) sin [(π/3)+(1/3)sin^(−1) ((pqr)/((((p^2 +q^2 +r^2 )/3))^(3/2) ))]))  sin α=(√(1−p^2 λ^2 ))  sin β=(√(1−q^2 λ^2 ))  sin γ=(√(1−r^2 λ^2 ))  ⇒Δ_(max) =((pqr)/2)((√((1/p^2 )−λ^2 ))+(√((1/q^2 )−λ^2 ))+(√((1/r^2 )−λ^2 )))    a=(√(q^2 +r^2 −2qr cos α))=(√(q^2 +r^2 −2pqrλ))  similarly  b=(√(r^2 +p^2 −2pqrλ))  c=(√(p^2 +q^2 −2pqrλ))

α+β+γ=2πΔ=areaoftriangleΔ=qrsinα2+rpsinβ2+pqsinγ2Δ=pqr2(sinαp+sinβq+sinγr)=pqr2ΦwithΦ=sinαp+sinβq+sinγrΔmaxΦmaxF=sinαp+sinβq+sinγrλ(α+β+γ2π)Fα=cosαpλ=0cosα=pλsimilarlycosβ=qλcosγ=rλweseercosβ=qcosγ=qrλ,thatmeansASBC.similarlyBSAC,CSAB.thatmeansSistheorthocenterofthetriangle.cos(α+β)=cos(2πγ)=cosγpqλ2(1p2λ2)(1q2λ2)=rλpqλ2rλ=(1p2λ2)(1q2λ2)p2q2λ42pqrλ3+r2λ2=(1p2λ2)(1q2λ2)p2q2λ42pqrλ3+r2λ2=1(p2+q2)λ2+p2q2λ41λ3p2+q2+r2λ+2pqr=01λ=2p2+q2+r23sin[π3+13sin1pqr(p2+q2+r23)32]λ=12p2+q2+r23sin[π3+13sin1pqr(p2+q2+r23)32]sinα=1p2λ2sinβ=1q2λ2sinγ=1r2λ2Δmax=pqr2(1p2λ2+1q2λ2+1r2λ2)a=q2+r22qrcosα=q2+r22pqrλsimilarlyb=r2+p22pqrλc=p2+q22pqrλ

Commented by mr W last updated on 03/Mar/24

example: p=2, q=3, r=5

example:p=2,q=3,r=5

Commented by mr W last updated on 03/Mar/24

Commented by mr W last updated on 04/Mar/24

with λ=(1/(2(√((p^2 +q^2 +r^2 )/3)) sin [(π/3)−(1/3)sin^(−1) ((pqr)/((((p^2 +q^2 +r^2 )/3))^(3/2) ))]))  we get the minimum area. in this  case the orthocenter lies outside  the triangle.

withλ=12p2+q2+r23sin[π313sin1pqr(p2+q2+r23)32]wegettheminimumarea.inthiscasetheorthocenterliesoutsidethetriangle.

Commented by mr W last updated on 03/Mar/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com