All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 205371 by 073 last updated on 19/Mar/24
Commented by lepuissantcedricjunior last updated on 19/Mar/24
I=∫02log(x3+8)dxposons{u=log(x3+8)v′=1⇔{u′=3x2(x3+8)ln10v=xI=[xlog(x3+8)]02−3ln10∫02(1−8x3+8)dx=2log(16)−6ln10+24ln10∫02(ax+2+bx+cx2−2x+4)dx{a+b=0=>a=−b−2a+2b+c=0=>−4a+c=0=>c=4a4a+2c=14a+2c=1=>8a=1=>a=18b=−18;c=12⇒I=8log(2)−6ln10+24ln10∫02(18x−18x−12x2−2x+4)dx=8log(2)−6ln10+3ln10∫02(1x−12(2x−2−6x2−2x+4))dx=8log(2)−6ln10+3ln10ln2−3ln42ln10+9ln10∫02dx3[1+(x−13)2]=8log(2)−6ln10+33ln10[arctan(x−13)]02=8log(2)−6ln10+33ln10(π6−(−π6))=8log(2)−1ln10(6−π3)=============================================..................lepuissantDr..............................=========================================================
Commented by 073 last updated on 19/Mar/24
???????
Answered by mathzup last updated on 21/Mar/24
x=2t⇒I=2∫01log(8t3+8)dt=2∫01(3ln2+ln(1+t3))dt=6ln2+2∫01ln(1+t3)dtbut∫01ln(1+t3)dt=[tln(1+t3)]01−∫01t(3t2)1+t3dt=ln2−3∫01t3+1−11+t3dt=ln2−3+3∫01dt1+t3∫01dt1+t3=∫01Σ(−1)nt3ndt=∑n=0∞(−1)n∫01t3ndt=∑n=0∞(−1)n3n+1=∑n=0∞16n+1−∑n=013(2n+1)+1=∑n=0∞(16n+1−16n+4)=3∑n=0∞1(6n+1)(6n+4)=112∑n=0∞1(n+16)(n+23)=112(Ψ(23)−Ψ(16)×123−16=16(Ψ(23)−Ψ(16))⇒I=ln2−3+12{Ψ(23)−Ψ(16)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com