Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205371 by 073 last updated on 19/Mar/24

Commented by lepuissantcedricjunior last updated on 19/Mar/24

I=∫_0 ^2 log(x^3 +8)dx  posons  { ((u=log(x^3 +8))),((v′=1)) :}⇔ { ((u′=((3x^2 )/((x^3 +8)ln10)))),((v=x)) :}  I=[xlog(x^3 +8)]_0 ^2 −(3/(ln10))∫_0 ^2 (1−(8/(x^3 +8)))dx    =2log(16)−(6/(ln10))+((24)/(ln10))∫_0 ^2 ((a/(x+2))+((bx+c)/(x^2 −2x+4)))dx   { ((a+b=0=>a=−b)),((−2a+2b+c=0=>−4a+c=0=>c=4a)) :}4a+2c=1  4a+2c=1=>8a=1=>a=(1/8)  b=−(1/8);c=(1/2)  ⇒I=8log(2)−(6/(ln10))+((24)/(ln10))∫_0 ^2 (((1/8)/x)−(((1/8)x−(1/2))/(x^2 −2x+4)))dx         =8log(2)−(6/(ln10))+(3/(ln10))∫_0 ^2 ((1/x)−(1/2)(((2x−2−6)/(x^2 −2x+4))))dx          =8log(2)−(6/(ln10))+(3/(ln10))ln2−((3ln4)/(2ln10))+(9/(ln10))∫_0 ^2 (dx/(3[1+(((x−1)/( (√3))))^2 ]))  =8log(2)−(6/(ln10))+((3(√3))/(ln10))[arctan(((x−1)/( (√3))))]_0 ^2   =8log(2)−(6/(ln10))+((3(√3))/(ln10))((𝛑/6)−(−(𝛑/6)))  =8log(2)−(1/(ln10))(6−𝛑(√3))  =============================================  ..................le puissant Dr..............................  =========================================================

I=02log(x3+8)dxposons{u=log(x3+8)v=1{u=3x2(x3+8)ln10v=xI=[xlog(x3+8)]023ln1002(18x3+8)dx=2log(16)6ln10+24ln1002(ax+2+bx+cx22x+4)dx{a+b=0=>a=b2a+2b+c=0=>4a+c=0=>c=4a4a+2c=14a+2c=1=>8a=1=>a=18b=18;c=12I=8log(2)6ln10+24ln1002(18x18x12x22x+4)dx=8log(2)6ln10+3ln1002(1x12(2x26x22x+4))dx=8log(2)6ln10+3ln10ln23ln42ln10+9ln1002dx3[1+(x13)2]=8log(2)6ln10+33ln10[arctan(x13)]02=8log(2)6ln10+33ln10(π6(π6))=8log(2)1ln10(6π3)=============================================..................lepuissantDr..............................=========================================================

Commented by 073 last updated on 19/Mar/24

???????

???????

Answered by mathzup last updated on 21/Mar/24

x=2t ⇒I=2∫_0 ^1 log(8t^3 +8)dt  =2∫_0 ^1 (3ln2 +ln(1+t^3 ))dt  =6ln2 +2∫_0 ^1 ln(1+t^3 )dt  but ∫_0 ^1 ln(1+t^3 )dt=[tln(1+t^3 )]_0 ^1 −∫_0 ^1 ((t(3t^2 ))/(1+t^3 ))dt  =ln2−3∫_0 ^1 ((t^3 +1−1)/(1+t^3 ))dt=ln2−3+3∫_0 ^1 (dt/(1+t^3 ))  ∫_0 ^1 (dt/(1+t^3 ))=∫_0 ^1 Σ(−1)^n t^(3n) dt  =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(3n) dt=Σ_(n=0) ^∞ (((−1)^n )/(3n+1))  =Σ_(n=0) ^∞ (1/(6n+1))−Σ_(n=0)  (1/(3(2n+1)+1))  =Σ_(n=0) ^∞ ((1/(6n+1))−(1/(6n+4)))  =3Σ_(n=0) ^∞ (1/((6n+1)(6n+4)))  =(1/(12))Σ_(n=0) ^∞ (1/((n+(1/6))(n+(2/3))))  =(1/(12))(Ψ((2/3))−Ψ((1/6))×(1/((2/3)−(1/6)))  =(1/6)(Ψ((2/3))−Ψ((1/6))) ⇒  I=ln2−3 +(1/2){Ψ((2/3))−Ψ((1/6))}

x=2tI=201log(8t3+8)dt=201(3ln2+ln(1+t3))dt=6ln2+201ln(1+t3)dtbut01ln(1+t3)dt=[tln(1+t3)]0101t(3t2)1+t3dt=ln2301t3+111+t3dt=ln23+301dt1+t301dt1+t3=01Σ(1)nt3ndt=n=0(1)n01t3ndt=n=0(1)n3n+1=n=016n+1n=013(2n+1)+1=n=0(16n+116n+4)=3n=01(6n+1)(6n+4)=112n=01(n+16)(n+23)=112(Ψ(23)Ψ(16)×12316=16(Ψ(23)Ψ(16))I=ln23+12{Ψ(23)Ψ(16)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com