Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 20561 by mondodotto@gmail.com last updated on 28/Aug/17

Answered by mind is power last updated on 07/Nov/19

ln(((x+1)/(x−1)))=ln(((1+(1/x))/(1−((1 )/x))))  ln(1+t)=Σ_(n≥1) (−1)^(n−1) .(t^n /n)  if ∣t∣<1  −ln(1−t)=Σ_(n≥1) (t^n /n)  ⇒ln(((1+(1/x))/(1−(1/x))))=ln(1+(1/x))−ln(1−(1/x))=Σ_(n≥1) (−1)^(n+1) (1/(nx^n ))+Σ_(n≥1) (1/(nx^n ))  =Σ_(n≥1) (1+(−1)^(n+1) ).(1/(nx^n ))=2Σ_(k=1) ^(+∞) (1/((2k−1).x^(2k−1) ))

ln(x+1x1)=ln(1+1x11x)ln(1+t)=n1(1)n1.tnnift∣<1ln(1t)=n1tnnln(1+1x11x)=ln(1+1x)ln(11x)=n1(1)n+11nxn+n11nxn=n1(1+(1)n+1).1nxn=2+k=11(2k1).x2k1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com