Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206003 by mnjuly1970 last updated on 04/Apr/24

Answered by Berbere last updated on 04/Apr/24

Ω=∫_0 ^∞ (e^(−x) /x^2 )(1−cos(x))dx  Ω(a)=∫_0 ^∞ ((e^(−x) (cos(ax)−cos(x)))/x^2 )dx;Ω(1)=0  Ω′(a)=∫_0 ^∞ ((−e^(−x) sin(ax))/x)dx  Ω′(0)=0;Ω′′(a)=−∫_0 ^∞ e^(−x) cos(ax)dx  =−Re∫_0 ^∞ e^(−x) e^(iax) dx=(1/(1+a^2 ))  Ω′(a)=tan^(−1) (a)  Ω(a)=∫_1 ^a tan^(−1) (x)dx=atan^(−1) (a)−(1/2)ln(((1+a^2 )/2))−(π/4)  Ω=Ω(0)=(1/2)ln(2)−(π/4)

Ω=0exx2(1cos(x))dxΩ(a)=0ex(cos(ax)cos(x))x2dx;Ω(1)=0Ω(a)=0exsin(ax)xdxΩ(0)=0;Ω(a)=0excos(ax)dx=Re0exeiaxdx=11+a2Ω(a)=tan1(a)Ω(a)=1atan1(x)dx=atan1(a)12ln(1+a22)π4Ω=Ω(0)=12ln(2)π4

Answered by mathzup last updated on 05/Apr/24

I=_(by parts) [−(1/x)e^(−x) (1−cosx)]_0 ^(+∞)   −∫_0 ^∞  (−(1/x)){−e^(−x) (1−cosx)+e^(−x) sinx}dx  =0+∫_0 ^∞  (1/x)(e^(−x) (sinx+cosx−1))dx  =∫_0 ^∞ (e^(−x) /x)(sinx+cosx−1)dx  f(λ)=∫_0 ^∞ (e^(−λx) /x)(sinx+cosx−1)dx  f^′ (λ)=−∫_0 ^∞ e^(−λx) (sinx+cosx−1)dx  =∫_0 ^∞  e^(−λx) dx−∫_0 ^∞  e^(−λx) (cosx+sinx)dx  but ∫_0 ^∞  e^(−λx) dx=[−(1/λ)e^(−λx) ]_0 ^∞ =(1/λ)  ∫_0 ^∞  e^(−λx) (cosx +sinx)dx  =Re(∫_0 ^∞  e^(−λx+ix) dx)+Im(∫_0 ^∞ e^(−λx+ix) dx)  ∫_0 ^∞  e^((−λ+i)x) dx=[(1/(−λ+i))e^((−λ+i)x) ]_0 ^∞   =−(1/(−λ+i))=(1/(λ−i))=((λ+i)/(1+λ^2 )) ⇒  R(...)=(λ/(1+λ^2 )) and Im(...)=(1/(1+λ^2 ))  ⇒f^′ (λ)=(1/λ)−(λ/(1+λ^2 ))−(1/(1+λ^2 )) ⇒  f(λ)=ln(λ)−(1/2)ln(λ^2 +1)−arctanλ +c  lim_(λ→+∞) =0=−(π/2)+c ⇒c=(π/2)  ⇒f(λ)=ln((λ/( (√(1+λ^2 )))))−arctanλ +(π/2)  I=f(1)=ln((1/( (√2))))−(π/4)+(π/2)  =−(1/2)ln(2)+(π/4) ⇒  I=(π/4)−(1/2)ln(2)

I=byparts[1xex(1cosx)]0+0(1x){ex(1cosx)+exsinx}dx=0+01x(ex(sinx+cosx1))dx=0exx(sinx+cosx1)dxf(λ)=0eλxx(sinx+cosx1)dxf(λ)=0eλx(sinx+cosx1)dx=0eλxdx0eλx(cosx+sinx)dxbut0eλxdx=[1λeλx]0=1λ0eλx(cosx+sinx)dx=Re(0eλx+ixdx)+Im(0eλx+ixdx)0e(λ+i)xdx=[1λ+ie(λ+i)x]0=1λ+i=1λi=λ+i1+λ2R(...)=λ1+λ2andIm(...)=11+λ2f(λ)=1λλ1+λ211+λ2f(λ)=ln(λ)12ln(λ2+1)arctanλ+climλ+=0=π2+cc=π2f(λ)=ln(λ1+λ2)arctanλ+π2I=f(1)=ln(12)π4+π2=12ln(2)+π4I=π412ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com