All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 206003 by mnjuly1970 last updated on 04/Apr/24
Answered by Berbere last updated on 04/Apr/24
Ω=∫0∞e−xx2(1−cos(x))dxΩ(a)=∫0∞e−x(cos(ax)−cos(x))x2dx;Ω(1)=0Ω′(a)=∫0∞−e−xsin(ax)xdxΩ′(0)=0;Ω″(a)=−∫0∞e−xcos(ax)dx=−Re∫0∞e−xeiaxdx=11+a2Ω′(a)=tan−1(a)Ω(a)=∫1atan−1(x)dx=atan−1(a)−12ln(1+a22)−π4Ω=Ω(0)=12ln(2)−π4
Answered by mathzup last updated on 05/Apr/24
I=byparts[−1xe−x(1−cosx)]0+∞−∫0∞(−1x){−e−x(1−cosx)+e−xsinx}dx=0+∫0∞1x(e−x(sinx+cosx−1))dx=∫0∞e−xx(sinx+cosx−1)dxf(λ)=∫0∞e−λxx(sinx+cosx−1)dxf′(λ)=−∫0∞e−λx(sinx+cosx−1)dx=∫0∞e−λxdx−∫0∞e−λx(cosx+sinx)dxbut∫0∞e−λxdx=[−1λe−λx]0∞=1λ∫0∞e−λx(cosx+sinx)dx=Re(∫0∞e−λx+ixdx)+Im(∫0∞e−λx+ixdx)∫0∞e(−λ+i)xdx=[1−λ+ie(−λ+i)x]0∞=−1−λ+i=1λ−i=λ+i1+λ2⇒R(...)=λ1+λ2andIm(...)=11+λ2⇒f′(λ)=1λ−λ1+λ2−11+λ2⇒f(λ)=ln(λ)−12ln(λ2+1)−arctanλ+climλ→+∞=0=−π2+c⇒c=π2⇒f(λ)=ln(λ1+λ2)−arctanλ+π2I=f(1)=ln(12)−π4+π2=−12ln(2)+π4⇒I=π4−12ln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com