Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 206079 by mr W last updated on 06/Apr/24

Answered by A5T last updated on 06/Apr/24

Commented by A5T last updated on 06/Apr/24

x is not dependent on the position of A on the  diameter, otherwise, x would not be uniquely  defined.  So,consider the case when A is coincident with  the center, then length x subtends an angle of  60° at the centre, which makes it equal to the  radius⇒x=8. This must also be true for all  positions of A.

xisnotdependentonthepositionofAonthediameter,otherwise,xwouldnotbeuniquelydefined.So,considerthecasewhenAiscoincidentwiththecenter,thenlengthxsubtendsanangleof60°atthecentre,whichmakesitequaltotheradiusx=8.ThismustalsobetrueforallpositionsofA.

Answered by mr W last updated on 06/Apr/24

Commented by mr W last updated on 06/Apr/24

x is a chord corresponding to a  central angle of 60°.   ⇒x=R=8

xisachordcorrespondingtoacentralangleof60°.x=R=8

Answered by mr W last updated on 06/Apr/24

Commented by mr W last updated on 06/Apr/24

R^2 =p^2 +a^2 +pa  R^2 =q^2 +a^2 −qa  ⇒p, −q are roots of z^2 +az+a^2 −R^2 =0  ⇒p−q=−a, −pq=a^2 −R^2   x^2 =p^2 +q^2 −pq=(p−q)^2 +pq      =(−a)^2 −(a^2 −R^2 )=R^2   ⇒x=R=8 ✓

R2=p2+a2+paR2=q2+a2qap,qarerootsofz2+az+a2R2=0pq=a,pq=a2R2x2=p2+q2pq=(pq)2+pq=(a)2(a2R2)=R2x=R=8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com