Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 207060 by efronzo1 last updated on 06/May/24

  ⇃

Answered by mr W last updated on 05/May/24

Method II  a_(n+2) −a_(n+1) =−(1/2)(a_(n+1) −a_n )  let b_n =a_(n+1) −a_n   b_(n+1) =−(1/2)b_n   b_n =(−(1/2))b_(n−1) =(−(1/2))^2 b_(n−2) =...=(−(1/2))^(n−4) b_4   a_(n+1) −a_n =(−(1/2))^(n−4) (a_5 −a_4 )=(−(1/2))^(n−4)   a_(n+1) −a_n =(−(1/2))^(n−4) =16(−(1/2))^n   a_n −a_(n−1) =16(−(1/2))^(n−1)   a_(n−1) −a_(n−2) =16(−(1/2))^(n−2)   ...  a_5 −a_4 =16(−(1/2))^4   a_n −a_4 =16(−(1/2))^4 [1+(−(1/2))+(−(1/2))^2 +...+(−(1/2))^(n−5) ]  a_n −a_4 =((1−(−(1/2))^(n−4) )/(1+(1/2)))  a_n =(2/3)[1−(−(1/2))^(n−4) ]+4=((14)/3)−((32)/3)(−(1/2))^n

MethodIIan+2an+1=12(an+1an)letbn=an+1anbn+1=12bnbn=(12)bn1=(12)2bn2=...=(12)n4b4an+1an=(12)n4(a5a4)=(12)n4an+1an=(12)n4=16(12)nanan1=16(12)n1an1an2=16(12)n2...a5a4=16(12)4ana4=16(12)4[1+(12)+(12)2+...+(12)n5]ana4=1(12)n41+12an=23[1(12)n4]+4=143323(12)n

Answered by mr W last updated on 05/May/24

Method I  2a_(n+2) −a_(n+1) −a_n =0  2r^2 −r−1=0  (2r+1)(r−1)=0  r=−(1/2), 1  a_n =A(−(1/2))^n +B  a_n =2a_(n+2) −a_(n+1)   a_3 =2×5−4=6  a_2 =2×4−6=2  a_1 =2×6−2=10  a_0 =2×2−10=−6  −6=A+B  10=−(1/2)A+B  ⇒A=−((32)/3)  ⇒B=((14)/3)  ⇒a_n =((14)/3)−((32)/3)(−(1/2))^n

MethodI2an+2an+1an=02r2r1=0(2r+1)(r1)=0r=12,1an=A(12)n+Ban=2an+2an+1a3=2×54=6a2=2×46=2a1=2×62=10a0=2×210=66=A+B10=12A+BA=323B=143an=143323(12)n

Commented by efronzo1 last updated on 06/May/24

  {:  }